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ABSTRACT

e QMJW

THE ROOM TEMPERATURE DEFORMATION AND FRACTURE OF SEVERAL

POLYCRYSTALLINE GRAPHITES

Clarence Allan Andersson, Ph.D.

University of Pittsburgh, 1970

The room temperature mechanical properties of four commercial
polycrystalline graphites were investigated. The tensile deformation
and fracture were correlated to the particle sizes, the particle pre-
ferred orientations, the bulk densities and the stress axis directions.

With regard to the deformation, the total strain at a given
stress was found to be comprised of three strain components: (a) a
linear elastic strain; (b) an elastically constrained nonlinear plastic
strain; and (c) a residual strain arising from the relief of internal
stresses by crack formation. The dependence of the elastic strain on
the preferred orientation, the stress axis direction, the fraction
porosity and the extent of deformation was determined. The plastic

deformation was found to be limited by the magnitude of the elastic



iv
deformation, i.e., the plastic strain was proportional to the nth
power (n==3) of the product of the elastic compliance for the fully
dense material and the applied stress. The residual strain was found
to be linearly proportional to the maximum elastic strain that the
material had been subjected to, These results were combined into a
single deformation equation.

The fracture mechanism for polycrystalline graphite was deter-
mined. The materials were shown to develqp large cracks during defor-
mation. By quantitatively assessing the effects of the particle sizes,
pore fractions, degrees of preferred orientation and the stress axis
directions on each of the parameters of the equation for the brittle
fracture of a body containing such a crack, a fracture criterion was
was derived. Particle sizes affect the number of single particle
fractures required to create the critical crack. Increasing porosity
is shown to significantly decrease both the elastic moduli and the
fracture surface energies and to slightly increase the critical crack
size. Blastic moduli decrease and the probabilities of particle
fracture increase with preferential orientation of basal planes normal
to the stress axis,

Several improvements in testing and analytic techniques were
achieved. Established X-ray diffraction procedures to determine rela-
tive basal plane densities as functions of orientation were modified
to enable intensity determinations at all angles. Fracture toughness
values were obtained from center-notched tensile specimens containing

natural cracks rather than saw cuts. By considering transverse strain



interactions between neighboring crystallites as well as longitudinal
interactions, an improved method was developed to calculate the elastic
moduli of polycrystalline materials from both the single crystal
elastic constants and the X-ray diffraction preferred orientations.

The exponential dependencies of the elastic moduli on both fraction

porosity and the fraction of cracked particles were theoretically

derived.
DESCRIPTORS
Deformation Density (mass/volume)
Fracture properties Grain size
Graphite Preferred orientation

X ray analysis
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1.0 INTRODUCTION

The purpose of this work was to perform analyses of both the
tensile deformation and fracture of polycrystalline graphites, and to
develop an improved model which would relate this behavior to certain
measurable physical properties. To achieve these ends, several high
strength commercial grades were selected in such a manner that the
variables of particle size, porosity and degree of preferred orienta-
tion could be investigated. The materials were subjected to tensile
and fracture tests, and in addition, to microscopic, density and X-ray
diffraction analyses. Deformation and fracture models were developed
to explain the results obtained. Finally, based on these models and
the test results, amalytic equations which agree with the physical
occurrences have been introduced.

In the present section, synthetic polycrystalline graphites
will be briefly described with emphasis on thelr general structure and
mechanical behavior. Some previous work on the mechanical properties
will be summarized in order to define some of the accomylishments and de-
ficiencies in the prevailing theories of deformation and in the criteria
for fracture. Also, the approach used in the work is outlined.

The materials and specimen configurations will be detailed in
the second major section. The procedures used to determine the mechani-
cal and physical properties will then be outlined. The test results are
given in the third section. In addition, the deformation model isi
introduced. Based on 1t, the strains are separated into components and

these in turn are related to the physical properties and occurrences.



In the fourth major section, the deformation analysis is discussed in
detail, and a synthesis of the conclusions in the form of an equation
is presented. Finally in this latter section, a model for fracture and

a improved fracture criterion will be presented.

1.1 A General Description of Polycrystalline Graphites

1.11 Structure of Polycrystalline Graphites

Commercial polycrystalline graphites are porous composite struct-
ures consisting of flour particles (or grist) “cemented" together with
a binder, analogous to bricks and mortar. The flour particles serve as
the main structural element. These are generally artificially produced
graphitic materials based on petroleum—derived’coke, although they can
be natural flakes, lampblack or other carbon products derived from a
variety of hydrocarbons. The maximum flour particle dimensions used in
synthetic graphites can vary from less than 0.001 to 0.5 inches. These
particles are not single crystals, but consist of a mass of subcrystals
or crystallites which correspond somewhat to grains in metals. The
crystallites have the well known hexagonal structure of graphite to
various degrees of perfection, the perfection being dependent on the
starting materials, graphitizing temperatures, etc. Except for certain
graphite flours, the crystallites are not randomly oriented. Instead,
there is a high degree of preferred orientation of the crystallites re~
sulting in highly anisotropic flour particles. Microscopic examination

of flours usually reveals an oblong shape having a layered or striated



structure with basal planes preferentially oriented parallel to the
striations. The anisotropy and the shape, in conjunction with the de-
formation applied during production, are the major causes for the aniso-
tropy of the synthetic bulk materials. To obtain isotroplc graphites,
the flours should be spherical in shape and should have a random orienta-
tion of the crystallites.

The purpose of the binder is to hold the initially formed bulk
together as well as to form an integral part of the final struecture.
The desired characteristics of the binders are high viscosities at room
temperature (to facilitate handling), low volatile expulsion (a major
source of porosity), high coking value (a high percentage of carbon
should remain after hydrocarbon breakdown) and structural integrity in
the final product. The most widely used binder is pitchj; however a
wide variety of proprietary binders are used. Binders fall into two
main categories: those that graphitize (form hexagonal layered struc-
tures) and those that do not (remain "glassy"). Graphitizing types are
the most widely used, pitch falling into this category.

Production of polycrystalline, commercial graphites is both

*
varied and proprietary, so only general remarks will be made.(l) Pre-
Liminary steps include milling of the flour to desired size distribu-
tions, heating to remove volatiles and mixing with binder (usually
heated pitch). The cooled mixture is ground to a particular particle
gize and molded. Compacting and shaping is carried out by an extru-~

sion or pressing operation. It is this operation that orients the

*Parenthetical references placed superior to the line of text
refer to the bibliography.



the flour particles, resulting in the anisotropy of the bulk material.
Molded graphites have their c-axes preferentially oriented in the press-
ing direction while extruded grades have the c-axes oriented radially.
Isotropic graphites are obtained by isostatically pressing to avoid this
physical alignment. Baking (heating to 1200°C) is carried out to car-
bonize the binder. Most volatiles are released before 600°C is reached
and heating rates are kept below 4°¢ per hour. To obtain high densities
an impregnation of an organic (e.g., pitch) is made prior to the graphi-
tization step. Graphitization is carried out at temperatures between
2500 and 3OOOOC to crystallize the carbon in order to achieve the
graphite structure. Some materials (such as ZTA) are hot pressed and
thus achieve high densities and high degrees of preferred orientation.
Graphites can be engineered to have a wide variety of proper-
ties depending on both the starting materials and the production methods.
In fact, quality control is a difficult problem for any single grade.
Properties of the flours vary depending on the source of the petroleum
coke, the treatments given the coke, even when they were produced. For
g given flour, different graphites can be produced by changing binders.
Variations in production result from particle size distributions, binder
percentages, deformation pressures, deformation rates, rates of volatile
production, graphitizing temperatures and a multitude of other small
variations. Due to the inherent complexities, complete characteriza-
tion of any grade would be an enormous and difficult task. There are
however, certain properties of the final product which produce first
order contributions to the mechanical properties of interest in the

present work. These are: (a) degree of anisotropy in the bulk materialj



(b) density of the material; (c) flour particle sizes; (d) flour parti-
cle properties; and (e) graphitizability of the binder. Of these five
items, the first three are measurable. Flour particle properties are
difficult to assess since they are dependent on the starting materials,
graphitization temperatures, crystallite perfection, crystallite pre-
ferred orientations, etc. The study will show however, that in the
graphites studied the flour particle properties are not as significant
as the first three items. Binder graphitizability has been eliminated
from the study by choosing grades in which the binders are reasonably
graphitic. A good estimate of the mechanical properties can therefore

be made from the knowledge of anisotropy, density and particle sizes.

1.12 General Characteristics of the Deformation of Polycrystalline

Graphites

The deformation of graphite has best been characterized by a
stress-strain curve obtained by cyclically stressing the material to
increasingly higher values. A schematic representation is shown in
Figure 1. The notation on this figure will be retained throughout this
work. Ipading a specimen to failure would result in the nonlinear
curve O AE J. On the other hand, loading to some stress,(fﬁ, at point
A, and then unloading along A B C gives rise to a permanent set (or
residual strain),£,. Reloading to €p occurs along curve C D A re-
sulting in the hysteresls loop A B C D A. Continued loading follows
the original 0 A E J curve. If the specimen is unloaded at point E

and then reloaded, the hysteresis loop E F G H E is obtained. The



modulus of elasticity, E, is generally defined to be the slope of the
reloading curves (e.g. C D A or G H E) at stresses approaching zero.

Any loading cycle can then be arbitrarily divided into a linear and non-
linear component, i.e., the strain,en—ekw at any stress,(j; between O
and CT@, is equal to an elastic strain, E}” and a non-elastic strain,
€,-

Other general observations have been made with regard to cycli-
cally loaded stress-strain curves. Hysteresis loops are wider at higher
deformations. Initial increments in permanent sets are small compared
to those obtained at higher deformations for equivalent changes in Cfﬁ
cu‘E}l. The modulus of elasticity decreases with deformation. Also

the strain, € , achieved on reloading to Cfm, from zero stress is some-

m

times larger than the value prior to unloading, especially at higher
deformations. The deformation curves in tension or compression are

different though both follow the schema of Figure 1.

1.13 General Characteristics of the Strengths of Polycrystalline

Graphites

Although they display nonlinear stress-strain relationships,
graphites fail like brittle materials at room temperature. The frac-
tures resemble cleavage failures with no reduction in area in tension.
In fact, it has been shown that an increase in area generally results
(and therefore in volume) which is indicative of the occurrence of
internal cracking. In tension the total strain to failure is always

less than one percent. In common with other brittle materials the



compréssive strengths (less than 20,000 psi) are considerably greater
than the tensile strengths (less than 10,000 psi), and, at room tempera-
ture, compression fallures occur due to transverse tensile stresses.

Three physical properties have been shown to have large effects
on the mechanical properties. First, due to the anisotropy of most
flour particles and manufacturing techniques, most synthetic graphites
display some degree of bulk anisotropy. The against-grain (c-axes
preferentially orientated in the tensile direction) strengths are less
than the with-grain (a-axes preferentially oriented in the tensile
direction) strengths. Second fine flour particle graphites deform
more and have greater gtrengths than do coarse particle graphites.
Finally, strengths of graphites decrease with decreasing densities.

An interesting mechanical property of graphite distinguishes
it from most other materials. The strength of graphite increases
(approximately doubles) from room temperature to a temperature between
2000 and 2500°C. The increase occurs with no great change in the
permanent deformation. Above the peak temperature, the strengths
decrease at a rapid rate and are accompanied by increasing elonga-
tions. To a large degree, high temperature deformation is due to a

specific volume increase.

1.2 Review of the Literature

1.21 Deformation of Single Crystal Graphite

The crystal structure of graphite is a highly anisotropic



hexagonal layered structure, consisting of covalently bonded carbon
atoms within the layers (C-C bond=10.5 e.v., 2p=1.42 X). The inter-
layer bonding is of the van der Waals type (interlayer separation =
3.37 X). The weak interlayer bonding combined with the low mobility
of the covalently bonded carbon atoms makes the attainment of perfect
crystals difficult, even when temperatures as high as 3000°C are used.
The resulting defects fall into two categories:(l) (a) layer stacking
defects (turbostratic defects) in which layers are either displaced
linearly, displaced angularly or contain stacking faults, and (b)
carbon bond defects consisting of vacancies, dislocations, twins, cry-
stallite boundaries, etc. Since melting is not a workable process and
- most graphitic products are derived from organic materials, the result-
ing materials are greatly influenced by their histories. These problems
influence the deformation studies of graphites, even those concerned
with "nearly perfect" single crystals.

A reasonably complete study of the deformation of a single
crystal-like material was made by Blakslee, et. al.(z) Pyrolytic
graphite was annealed under compression perpendicular to the substrate.
This procedure bhoth promofed crystallite growth and aligned the c-axes,
although the a-axes remained randomly oriented. The latter factor
should have had little effect since hexagonal crystals are elastically
isotropic in the basal plane. The material was otherwise structurally
good. The advantage of the material was that it could be produced in

gizes large enough to permit the use of several standard testing

methods (ultrasonic velocities, sonic resonances, and static tests)



and values could be cross-correlated. The elastic constants, i3>
and compliances, 813, were determined for this material, Table 1, and
were compared favorably with those obtained by other workers. The

one exception was the shear modulus, cy) = l/suu, for which the range

of values tabulated for all investigators was: 0.010 x 1011'<chu(0.h52
x 100t dynes/cm2 (2.2 x 10_11'(suu <100x10_ll cm?/dyne). This varia-

tion was attributable to highly mobile basal plane dislocations and

the higher value of c)), was thought to approach the intrinsic value.

There were several other observations of interest in this
paper. The stress-strain curves both parallel and perpendicular to
the basal planes were linear. However, the torsional test used to
obtain the shear modulus gave a curve with an initial linear slope but
became non-linear at higher stresses. These shear curves also showed
permanent deformation on removal of stress, as well as hysteresis loops
on reapplication of the stress. Shear strengths for these materials
were found to be in the range of 130 to 360 psi.

Soule and Nezbeda(3) determined the effect of dislocations
on basal plane shear and the shear modulus. Shear testing both
natural single crystal graphite and compression annealed pyrolytic
graphite, they determined average values for sy of le.‘LO-:Ll and 36xlo_ll
cmg/dyne respectively for the two types. Natural crystals with the
least microscopically observed imperfections had s)) values in the
range of 7x10_ll cm2/dyne. Iower values were achieved by pinning the
dislocations with boron atoms. Boron was diffused into natural

crystals and the shear modulus was measured ultrasonically as a func-

tion of boron concentration (ranging from 7 to 1500 ppm). Initially
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there was a rapid rise in c)) which saturated at higher concentrations
to U5 x 10 dynes/cm? (suu=2.2xlo-ll cm2/dyne). These values were
teken to be the intrinsic elastic shear constants for graphite. Addi-
tional observations were made in this paper with regard to basal plane
slip. Natural graphite stress-strain curves were characterized by
easy glide with an average yield stress of 4.2 psi and a strain harden-
ing rate approaching zero. Compression annealed samples did not slip
as easily (average yield stress was 83 psi) probably due to the presence
of a greater number of dislocation pinning points. Stress cycling of
the latter increased both the yield stress and the strain hardening
rates but the shear modulus was constant. The authors presented an

expression for the total shear strain,zr:
?" -1 n

where G is the shear modulus, 7’is the shear stress, and H and n are
constants governing the plastic strain. The constant n was evaluated
to be 4.2 for the natural graphite and 3.6 to 3.8 for the compression
annealed graphite. It is interesting to note that after several strain
cycles n approached the value 3 for the natural graphite, a value that
is pertinent to the present work.

Additionai evidence for dislocation pinning is given by
Seldin and Nezbeda.( ) Measuring the elastic constants of graphite
natural single crystals and compression annealed pyrolytic graphite

before and after neutron irradiation, they found little change in the

elastic constants other than Cp - Trradiation at 50°C caused an
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increase and saturation in the value of cyly similar to the effect of
boron doping. It was contended that as the dislocations became pinned
during irradiation, the modulus approached the "real" value for the
material.

To summarize, perfection in a single crystal of graphite
is difficult to achieve. The deformation is characterized by linear
stress-strain curves except for shear in the basal plane. The yield
strenéth is low and extensive plastic deformation is observed. A wide
range Of.chh values occur, the other elastic constants being fairly

invariant.

1.22 Deformation of Polycrystalline Graphites

The first and most widely accepted analysis of the deformation
of polycrystalline graphites was reported by Jenkins.(5) He tested
samples of a British reactor grade in compression by cyclically stress-
ing to successively higher values and recording both stresses and

strains. He noted that on the initial loading to a given value of

stress,(jﬁ, that the total strain,E}v could be ascribed to a combina~

tion of a linear (Hookean) strain,€ es> and a nonlinear strain, € D> such

that:

€n = €. + € (2)

Jenkins' analysis of the non-linear strain concluded that it was pro-
duced by plastic deformation in isolated parts of the structure which

was limited by the restraining elastic matrix, a mechanical analogy



being a friction block backed by a spring. This friction block moved
when the applied force exceeded the friction force, but was retarded by
the elastic reaction of the spring. From this model, three equations

were developed. For the initial stress imposition:
€n = a2
m = AUp + B (3)

where A is the elastic compliance (the reciprocal of Young's Modulus at
infinitesimally small stresses) and B is a constant governing the non-

linear strain. On removal of the stress:
2
€. -€ = ad, -0) +3% 3, -O) (4)

where Crand f‘ are values of stress and strain less than (j;. Further

stress imposition up to the previous maximum was governed by:
€-€ = a0+ 180°? (5)

whezszB is the permanent set (or residual strain). The term B was
given as a parameter proportional to the reciprocal of the shear modulus
which depends on the volume fraction of plastic material. Compressive
tests to 1200 psi (a value significantly below the fracture stress)
agreed well with the parabolic equations and the A and B parameters

were obtained for the material. Jenkins notes that deviations occurred
when higher stress levels were attempted. Although the equations were
derived without regard to microstructural mechanisms, he does make an
interpretation that the nonlinear strain and the associated hysteresis

loops are caused by a slip mechanism associated with basal plane dis-
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location movement in the striations within the flour particles. This
plastic deformation is said to be opposed by the binder, which is more
randomly oriented.

Another significant paper was produced by Jenkins(6) at about
the same time as the one cited above. In this, the deformation and
fracture of a polycrystalline graphite was observed under a microscope.
A thin strip of polished graphite was cemented to a brass strip and the
surface observed as the brass was bent. Stress concentrations were in-
duced by nicking the brass. The observations were summarized as follows:
(a) fracture in graphite proceeded easily along striations in the grist
(flour) particles, especially under shear at angles to the direction of
maximum strain; (b) it was extremely difficult to fracture the particles
perpendicular to the striations; (c) the boundary between the grist and
binder was sometimes weak; (d) cracks traveled preferentially through
the grist; (e) cracks traveled rapidly between pores where they were
stabilized by relief of the stress concentrations; and (f) isolated
stabilized cracks appear well before fracture. dJenkins concluded that
the grist was the weak link due to easy slip and fracture, and the
binder was therefore the strong link. He also concluded that crack
nucleation is easy, but propogation is difficult. Once again in this
paper there is emphasis on shear as a prime mode of deformation, largely
by slip and by shear fracture.

Slagle takes issue with some of Jenkins' results and inter-
pretations. He notes that Jenkins does not account for the extensive
cracking observed, especially in tensile tests of polycrystalline

(8) (9)

graphites (Jenkins later corrected this deficiency). Smith's paper
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is cited to support his contention that due to the lack of sufficient
slip systems to deform plastically, interlayer cracking is necessary

if graphite is to deform inelastically. Issue is also taken with
Jenkins' test method used to study deformation microscopically. The thin
specimen is stated to be uncharacteristic of bulk material and that, by
imposing a uniform strain field, i1t artificially increases stresses in
the high modulus regions above that which would occur in the bulk. To
overcome these objections, Slagle made microscopic observations of the
deformation of a thick ring-shaped speciment. This specimen is stressed
by an external compressive load, and depending on the region examined
the effects of tenslon, compression and shear can be determined. Stress
concentrations can be introduced by notching the specimen. The observa-
tions in the temsile region were summarized as follows: (a) on loading,
cracks occur in flour particles in the layer planes (striations) per-
pendicular to the stress; (b) further loading does not cause crack ex-
tension but widens the cracks and forms others in the region parallel

to the layer planes; (c) cracks form preferentially near pores; (d)
after failure, some cracks not involved in the fracture path close but
the larger ones remain open. Observations on notched compression sam-
ples indicated that the tensile and compression mechanisms are the

same, i.e., cracks formed in striations parallel to the compression
stress direction. In compression higher stresses were required to

generate the same number of cracks.
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Tensile stress-strain relationships were also obtained by Slagle
for the graphite parallel and perpendicular to the extrusion direction.
The Jenkins analysils did not adequately describe the results, especially
at higher stresses. One interesting result was that the permanent set,
65, was linearly proportional to the maximum strain,Eﬁp above some
minimum value «Em = .5 x 10_3). No difference in the proportionality
constant was found as a function of orientation. Slagle concludes that
the plastic deformation model is not supported by his investigation but
that the inelastic behavior must be related to interlayer crack forma-
tion. An alternate model was proposed. It was argued that cooling a
bulk graphite (even an isotropic one) from its graphitization tempera-
ture stresses individual flour particles, and fractures some, and that
the system is internally strained.This results from anisotropy in both
the elastic constants and the thermal expansion coefficients. The re-
sulting strains will be hoth tensile and compressive depending on orien-
tation and location. DPermanent set occurring after loading and then
unloading is explained by a shift in the distribution of the strains
caused by elimination by fracture of some of the particles from the
supporting structure. An attempt is made to explain the hysteresis
loops by this model. If it is assumed that the specimen consists of
columnar arrays of particles arranged randomly in parallel and in
series forming a complicated network, the unloading curve of the loop
would differ from the loading curve by compressively loading those
arrays which had large permanent sets on loading Differences noted
between tensile and compressive deformation curves are said to be

caused by the asymmetric strain distribution curve in agreement with
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(10)
Seldin; and because cracked particles in compression retain their
load bearing quality.
In answer to the criticism that his simple equations for de-
formation of polycrystalline graphites did not fit the curves at high
stresses and did not account for observed flour particle fractures,

(8)

Jenkins reported a more sophisticated modification based on the

11 12
( ) and Cottrell.( ) It is noted that at

analysis of Bilby et. al.
higher stresses the microcracks play an important role. When a shear
stress 1s applied to these, plastic fronts move from the crack tips.

This causes additional elastic and plastic displacements in the direc-

tion of the stress which are asdditive:

€ =€ +€,+ T, /8 (6)

where(jﬁ/E is the elastic strain of the material free of cracks ((jﬁ is

the stress and E is Youngs Modulus), E; is an additional elastic strain
due to the cracks and ei,is the plastic strain associated with the
plastic fronts. The derivation leads to equations which modify his

previous three equations (3, 4 and 5). On initial loading:

€, - Um Jm (1 4 _ [_E?__(?Q:Y] 1n sec (%ﬂ) (7)
y

where Q is a function of geometry and proportional to the crack popula-
tion, CT& is the overall yield stress of the material to which the curve
becomes asymptotic. On unloading there is a friction stress opposing

the return of the dislocations equal to twicecz& and:
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The permanent set,E}H is produced from this equation by setting Cfequal
to zero. Reapplication of the stress will be governed by:

€ —€= ;E':‘(l—l-Q)—'- 8Qdy in sec (7Td)

o T LTy

BT 2 (9)

The logarithmic term can be expanded to give a polynomial, and equation

7 written as:

2

S b

L
+ J-(ﬂd) + ...

12 20y (10)
On initial loading for stresses up to half of the yield stress,Cf , the

simple equation was found to be adequate:

€, = a0y B0, (11)
where

A = (L+Q/T) /e (12)
and

B = Q/2E 53, (13)
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At higher stresses equation 10 was used to properly describe the de-
formation curve. The modified equations predict that: (a) the apparent
elastic modulus will be lowered by large numbers of cracks; (b) the curve
will bend over asymptotically tony; and (c) cycling will produce perma-~
nent sets and static hystereses.
(10)

Seldin reported a rather comprehensive study on eight grades
of molded graphites, concentrating on ATJ and ZTA, two of the types
studied in the present investigation. Some pertinent results are cited
here. Stress-strain curves in both tension and compression were deter-
mined parallel to and perpendicular to the applied stress direction. The
longitudinal curves were similar to those previously reported.(5313)
Transverse curves were found to be different between the tension and
compression tests. 1In compression, the ratio of the transverse strain,
6}9 to the longitudinal strain, 6&) was constant (Poisson's ratio was
not a function of stress). On unloading, the positive transverse strain
resulted in‘a positive permanent set. In tension, on the other hand,
the nonlinear transverse curve had a curvature opposite to the longi-
tudinal curve, i.e., the slope dek/dji tended toward zero. Poisson's
ratio was therefore a function of stress. Stress cycling produced no
hysteresis loops. On unloading in this case, the initially negative
transverse strain resulted in a positive permanent set. Tensile load-
ing of graphite therefore, causes an increase in volume.

Annealing experiments were also reported in the above paper.
Pre-annealed specimens were stressed in tension and/or compression

soveral times with intermediate high temperature anneals. Iongitudinal

dimensional measurements were taken at each stage. In all cases, the
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original dimensions were recoverable. In addition, the stress-strain
curves after annealing were repeatable.

Although the present study concerns itself with room temperature
mechanical properties, a study of the elevated temperature creep proper-
tiles by Zukas and Green 1 provides pertinent information with regard
to deformation. The creep tests in compression and tension were per-
formed on ZTA graphite in the temperature region of 250000. In addition
to standard creep results as a function of eight different orientations
relative to the pressing direction, microscopic examinations are reported.
In tension, the creep rates were highest when samples were oriented in
the pressing direction and lowest when oriented perpendicular to the
pressing direction (the difference being five orders of magnitude).
Intermediate orientations gave intermediate rates. If basal plane slip
were a controlling mechanism, the intermediate orientations would be
expected to have higher creep rates due to more favorable basal plane
orientation. The compression tests showed a slight tendency to produce
higher intermediate orientation creep rates. The stress dependence on
creep rate was found to be the same in tension or compression and was
not influenced by orientation, nor was the activation energy for creep.
Microscopic observations prior to and after creep testing showed cracks
similar to those previously noted for room temperature deformation.
Strain measurements made on the photomicrographs produced overall
results that agreed with the mechanical measurements. However, strains
measured parallel to the tensile axes across regions which were free of
cracks showed significantly lower strains (in many cases undetectable)

than those which contained cracks. Transverse strains were measured to
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be zero. TFrom the activation energies and the stress dependences of
creep rates, 1t was concluded that the same deformation process was
rate controlling in both tension and compression. Also an overwhelm-
ing amount of the strain resulted from crack growth. Finally creep
strengths at 2500°C were a function of the crystallographic orienta-
tion of the basal planes, the resolved normal stress being the con-

trolling factor rather than the resolved shear stresses.

1.23 Fracture Criteria for Polycrystalline Graphites

A vast amount of engineering data has been produced with respect
to the mechanical strengths of the wide variety of graphite and carbon
products available. Dﬁe to differences in starting materials, produc-
tion methods and testing techniques, these properties vary widely.
After determining the mechanical properties of interest to them, many
investigators have attempted to correlate them to physical properties
and have reported these observations. As previously stated, the
physical properties which have the greatest effect are preferred orien-

(10,13,15) (13,15,16,17,18)
tations of flour particles,S) bulk densities,
and flour particle s:i_zes.(l In addition, strengths of graphites
have been related to mechanical properties such as the modulus of

. ., (13,16,19) . . o
elasticity (high moduli result in high strengths) and

. . (13,16,19) : .
strains to failure (some graphites appear to fail at a rela-
tively constant maximum strain, the failure stress being the value
necessary to achieve that strain).

A number of papers have attempted analytic correlations. In

these, various fracture criteria have been developed utilizing the
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physical significances of properties. Most of these are based on the
observation that graphite fractures in a brittle manner and that the
energy required to create the fracture must be supplied by the applied
strain energy. The physical properties are noted to effect one or the
other of the energies, and based on established theories for brittle
fracture the analytic expressions are derived. This essentially is
the approach of the present work and therefore some of the previously
published correlations will be cited.

(13)

Iostly and Orchard in reviewing the results of extensive

testing of British reactor graphite grades noted that the correspondence
between Young's moduli and strengths implied that failure was related
to the applied strain energy. Strain energies, S.E., were calculated

for two grades by the relationship:
2
s.5. =0 /oy, (1k)

wherecg is the fracture stress, and Yy is a modulus defined by:
Ys = CTm / (€m"€o) (15)

in the symbolism of Figure 1. For a single grade, the strain energies
were found to be the same for specimens tested both parallel and per-
pendicular to the extension direction. The "moduli" were different

in the two directions. The strain energies were however different
between the grades, the difference having been attributed to degrees
of structural perfection achieved by graphitization. The effect of

density on the mechanical properties was investigated by a series of

/
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impregnations of graphite specimens with a sugar solution, baking to
lO50°C, and flexure testing. The procedure increased the densities, the
moduli, the flexural strengths, and the strain energies, while the strains
to failure remained constant. A linear relationship was found between
strength and modulus, indicating that the impregnant was acting parallel
to the original structure.

The effect of graphitization was determined by heat treating
initially ungraphitized specimens to temperatures varying between 1000°
and 2600°C and then flexure testing at room temperature. With increasing
heat treatment temperature, the density remained constant, but the modulus
decreased. However, the strain to failure increased such that the strain
energies remained constant, i.e., the squares of the strengths were pro-
portional to the moduli. Combined heat treatments and impregnations
showed that the sequence did not effect the results. Neutron irradiation
of graphite specimens resulted in increases in both strength and moduli,
such that the constant strain energy criterion was maintained. From the
investigations, it was concluded that failure of graphite will result
when sufficient strain energy is available to perform the work to pro-
pogate a crack across misoriented boundaries between grains.

Mason(l6) added insight to the strain energy criterion by

noting it was based on the Griffith criterion for failure:

.y
2

d, 2 (2B NS/TT.) (16)

where(j; is the strength of the crystallite, E, is its modulus of elasti-

city, and Wg is the surface energy of a crack of length c. The strain



23

energy relationship was modified to account for density by:
2,2 2 )
0: “/&° = 0,7 /m )(a/d,) (17)

where d is the density and the zero subscript relates to crystal proper-
ties. TFrom equation 17 and a comparison of properties parallel and
perpendicular to the extrusion direction, Mason contended that the orien-
tation strength differences can be attributed to differences in crack/
lengths. He concludes from his analysis of the previously cited Work:l3)
that the relationship between strength and modulus depends on variations

of the crack size as well as the density.

A most successful attempt at formulating a fracture criterion,

(20)
based on the ceramic work of Knudsen, was applied to commercial
(18)
graphites by Knibbs. Knibbs microscopically studied the fracture of

three graphites of widely varying flour particle sizes. He concluded
that fracture was associated with cleavage of the larger particles and
that fracture proceeded similarly in the three grades. Stating that the
grains contain incipient cracks whose lengths are equal to the flour

particle sizes, the Griffith equation could be written as:

1

1 1
= 2
do = (4EWg/TT) Ay x (18)
where Cﬁ)is the failure strength of a fully dense isotropic graphite
whose maximum particle size is dmax‘ To account for the anisotropy

effect, a weighted average strength,(I%, was defined to be:
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0z = 1/30) + 2/30, (19)

where Uy is the strength parallel to the deformation axis and.C[L is
the strength perpendicular. Finally, the density effect on strength is

determined by an empirical equation used in ceramics:

-— i

J, = 0, e () (20)

where ﬁp is the volume fraction of pores, and m is a constant. Knudsen
made an attempt to derive this equation from the change in load bearing
areas with changing pore fraction, but this is unsatisfactory since it
does not account for stress concentrations associated with the voids.

Combining the equations, the average strength should be determined by:
- n
S o dysy exp (-m ﬁp) (21)

where n is substituted for the value 1/2 to check its validity., Iitera-
ture values for twelve nearly isotropic grades were analyzed, the
constants were determined, and to within + 14 percent:

-2

5= 1ex1® o) exp (6.8 %) em (22)

This equation correlates well for the nearly isotropic graphites over
wide ranges of particle sizes and densities. Highly anisotropic grades
however, show significant deviations. Also, pore fraction is heavily
weighted and it is pointed out that an increase in pore fraction of one
percent results in a strength reduction of 6.8 percent. Similar values

of m (4¢{ m{9) were found for various ceramics by Knudsen.
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Two other approaches to failure criteria based on the energy
required to produce fracture will be cited. In these works, instead
of analyzing the energy balances required to produce failure in standard
tensile specimens, the specimens tested were specifically designed to
measure the energies. First, Tattersall and Tappin(zl) noted that the

Griffith energy balance criterion is:

Wy = -dU/dA (23)

where Wg is the surface energy, U is the elastic stored energy and A is
the area of the fracture. As fracture proceeds, the term -dU/dA changes
as the crack size increases. Whether the crack proceeds 1s dependent on
the second differential of strain energy with respect to the crack area.
If —dU?dA? is positive the crack will accelerate because the released
strain energy is greater than the energy to create the new surface area.
Ir -dUz/dA? is negative, external work must be done to keep the crack
moving. The approach used was to measure the applied energy required

to make the crack grow, by using a "hard" test machine and by shaping
the specimen so that crack initiation requires only small loads. The
three-point load flexure specimen used was a square bar containing two
thin cuts which reduced the cross-section at the center of the specimen
to an isosceles triangle. In the test fixture the top point of the
triangle was oriented to be loaded in tension and a load-deflection
curve to failure was recorded. The work done was the area under the
curve divided by the area of the triangular fractured faces. Results

2
for a British Reactor grade were determined to be: Wg= lO5 ergs/cm

(.6 in-Ib/in®).
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A more sophisticated approach than the one cited above has been
developed to predict fracture loads of structures containing sharp
flaws: linear elastic fracture mechanics. The theory as developed by
Irwin(22’23) and numerous subsequent investigators can be based on either
an energy approach (similar to that previously described) or on a stress
intensity (at the flaw tip) approach, both leading to the same results.
(24)

An excellent review by Wessel et. al. will be briefly outlinedﬂ A
more detalled review is attainable in an ASTM publication.(25)

In an energy approach, the criterion for crack propagation is
that the energy supplied to the crack tip during incremental crack ex-
tension is greater than or equal to the energy absorbed by the crack tip
during that extension. Five energy components must be accounted for:
(a) strain energy; (b) external work; (c) kinetic energy; (d) energy to
form the new surfaces; and (e) energy to perform plastic work at the

crack tip. Since the kinetic energy is generally small, it can be

neglected and the criterion for crack extension can be written as:

dw du aw aw (24)
vy 6A->- ﬁ@“’ﬁp Oa + dAséA

where We 1s the work of the external forces, U is the strain energy,
Wp is the plastic work, Wg is the surface energy, and A is the crack

area. Crack extension begins when:

dWe _ U _ dWp _ awg (25)
d A Gk -~ dA TE
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The left hand side of this equation is defined as G., the critical energy
release rate (alternatively called the critical crack extension force,

i

or the fracture surface energy), and is equivalent to twice the surface
energy in the Griffith treatment. It has been shown that G, is a function
of the material, temperature, strain rate and the state of stress at the
crack tip. TIts magnitude must be empirically determined on a cracked
body for which the energy.release rate is known.

The alternative approach to fracture mechanics is via an analysis
of the stress intensity at the crack tip. This stress intensity is
mathematically derived from the elastic stress field at the tip of an
existing crack which has a radius of curvature approaching zero. The
stresses derived are proportional to a stress intensity factor, K, which
is a function of the geometry, the applied loads, the size, location and
orientation of the crack. Crack propagation in this approach occurs when
the stress intensity at the crack tip reaches a critical level, K,. As
with G., K, must be experimentally determined from a body of known geo-
metry containing a known crack. Irwin has shown that the energy release

rate and the stress intensity approaches are equivalent and the constants

from each are related by:

i
2

K = (GE) (26)

for plane stress conditions, and:

k = ag/ (f) 3 (27)
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for plane strain conditions, where G is the energy release rate (or the
crack extension force), E is the elastic modulus, and )/ is Poisson's
ratio. As an example, for an infinite plate of unit thickness containing
a crack of finite length, 2 c, perpendicular to a uniaxial stress field,

under plane stress conditions the failure stress,(ff, is given by:

0; = ke (Me)” = (xofle)” (28)
(26)

Corum used the fracture toughness method to determine the

energy release rates for a single reactor graphite grade. Both the
energy and the stress intensity approaches were used on specimens cut
parallel and perpendicular to the extrusion direction. The specimens,
rectangular prisms having centrally located lateral saw cuts, were tested
in four-point flexure with the notch on the tensile surface. The crack
depth to beam depth ratio (c/d) was varied. For the specimens cut
parallel to the extrusion direction (the crack running perpendicular to
the extrusion direction), Gy, was determined to be .39 in-lb/in2 (£10

2
percent). For the transverse specimens Gy, was .29 in - 1b/in (& 12

percent). The term Gic is the critical crack extension force for the
opening mode for which the crack surfaces move opposite and perpendicular
to each other.

Corum also noted in this paper the effect of particle orientation
on the propagation of the cracks. When the particles were oriented with
striations parallel to the fracture path, the mode was transgranular and

casy. Conversely, misoriented particles caused intergranular fractures.

hxaminations of fractured surfaces indicated that fracture proceeded
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uniformly from the entire length of the notch whereas it tended to
radiate from a small localized area in the unnotched specimens.

Except for the effect of orientation in Corum's paper, no
attempts were made in the last two cltations to correlate the fracture
criteria with physical properties of the materials investigated. Only
a single material was studied in each case. It appears that the fracture
mechanics approach to a failure criterion would be useful if the effects

of porosity, orientation and grain size could be evaluated.

1.3 Statement of the Problem

1.31 Deformation of Polycrystalline Graphites

The analysis developed by Jenkins is widely accepted to aptly
describe the deformation of graphite. A major deficiency in the simpli-
fied theory, that observed cracks were not accounted for and the fit was
poor at higher deformations, appears to have been solved in the later
paper. The important achievements of Jenkins' analysis is his model of
limited basal plane slip restricted by elastic constraints, and the
observation that the total strain can be divided into linear and non-
linear strain components. Jenkins proposes the non-linear strain is
due to basal plane slip, which is the only non-linear deformation mode
observed in graphite single crystal slip. Objections to plastic de-
formation models raised by Slagle are that there are insufficient slip

systems available to polycrystalline graphites and that shear failures
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are not observed microscopically (microcracks form by cleavage)l Also,
basal plane s8lip does not control creep, but tensile creep rates are
direct functions of the number of basal planes normal to the stress.

An alternate deformation mechanism has been proposed by Slagle,
but with no equations. Cooling anisotropic bodies from elevated tempera-
tures introduces an internal strain distribution which is changed by
deformation. Permanent sets are attributed to the elimination of support-
ing elements by microcracks, and hysteresis loops to the unloading curve
differing from the loading curve by compressively loading those regions
which had large permanent sets on loading. Slagle's hysteresis loop
explanation is unsatisfactory because it ignores the observation of loops
in basal plane shear. Also, it would predict the elimination of the
loops on successive cycles to a constant stress, since the majority of
microcracks are formed on the initial loading. This is contrary to
observation.

It appears that both of the extant theories of deformation ade-
quately describe certain observations, but have deficiencies in other
areas. A reevaluation of the deformation is required to clarify the

points of contention.

1.32 Fracture Criterion

Since polycrystalline graphites are observed to fracture in a
brittle manner, attempts to develop failure criteria have been based on
the Griffith theory. Physical properties have been noted to have effect

on the energy balance criteria. The Knudsen approach has been the most
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successful attempt at correlating physical properties to measured
strengths. It, however, has certain shortcomings. First, the anisotropy
effects are not truly accounted for. Instead, weighted average strengths
are used. The pore fraction effect on strength is based on an empirical
relationship used in ceramics and appears to be heavily "weighted" in
the equation. Also, there is the implication that the constants in the
Griffith equation (E andws) are universal for graphite. The grades which
deviate greatly from the derived relationship probably do so because of
a deviation of the product EW,.

The fracture mechanics approach to failure criteria has gained
wide acceptance. The major objection to 1ts use is that preexisting
flaws are expected to be present in the material in order for the theory
to predict failure stresses. Fracture mechanics does not provide an
answer to the mechanism whereby materials, initially relatively free of
flaws, fail. In a material such as graphite, where microcracks are
observed during deformation, there should be a bridge between fracture
mechanics and tensile failure. The effects of physical properties on
fracture toughness requires attention also, to give a clue to the effects
previously cited.

Although the Knudsen treatment has been fairly successful, it is
not entirely satisfactory.A\The fracture toughness approach to failure
criteria, as used by Corum, also has limitations. It appears however,
that an expansion of the latter to include physical properties effects

would be fruitful.
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1.4 The Approach of the Thesis

The deformation of polycrystalline graphites will be determined
by analyzing the tensile deformation curves of several commercial grades
of graphite. The contributions of certain of the physical properties to
the components of the stress-strain curve will be assessed, and an equa-
tion based on the determined model will be presented. It will be shown
that the strain,E}v at any level of stress is the sum of three compo-
nent strains which are not entirely independent: (a) the elastic (Hookean)
strain; (b) the elastically constrained plastic strain; and (c) the per-
manent set due to internal stress relief by cracks.

‘The fracture criteria will be attained by determining the effect
of preferred orientation, porosity and particle size on the fracture
toughness relationships. From the equation of the failure stress of

material containing a penny shaped crack:

0.« [ Moy o] 2

oj

it will be shown that the preferred orientation and porosity effect
both the elastic modulus, E, and the energy release rate GIC; and that
the critical crack length, ¢, is a function of the maximum particle

size, as well as the preferred orientation.
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2.0 FXPERIMENTAYT, PROCEDURES

2.1 Materials

Four grades of commercial graphite, two from each of two
producers, were chosen for investigation. Grades ATJ and ZTA were
produced by the Carbon Products Division, Union Carbide Corporation.
Grades AXZ and AXF-5Q were produced by Poco Graphite, Incorporated. The
grades were selected primarily for their good mechanical properties and
to enable the investigation of the variables of the flour particle size,
density, and degree of preferred orientation. Grades ATJ and ZTA have
larger particle sizes (.005 inch maximum size) than the AXZ and AXF-5Q
(.0005 inch maximum size) grades but are still considered fine grained.
The densities of the materials as given by the manufacturers in grams
per square centimeter were: 1.9% (ZTA), 1.84 (AXF-5Q), 1.72 (ATJ) and
1.55 (AXZ); the theoretical density is 2.26. TFinally, both AXZ and AXF-
5Q are isotropic grades whereas ATJ has a slight preferred orientation
and ZTA is highly orientated.

Half of a 24 by 20 by 9 inch billet provided the material to
study the ATJ. The ZTA specimens were obtained from a 1 inch dia-
meter, 9 inch long billet and a 14 by 9 by 3 inch slab cut diametrically
from a second billet. Two 5 by 5 by 3 inch AXZ billets and one 4 1/2

inch diameter by 6 inch long AXF¥5Q billet provided these specimens.

2.2 Sampling

Specimen blanks were cut from billets to meet several criteria.

The specimens were to be as large as possible in order to approach good
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fracture toughness practice. Where possible, only the interior of the
billet was to be used to eliminate processing surface effects (higher
densities, higher preferred orientations, etc.). Where applicable,
the blanks were cut at various orientations (four for ZTA and two for
ATJ). Finally, the blanks for both the ZTA and ATJ were cut to elimin-
ate possible effects of variation across the billet, i.e., all the
specimens of a particular orientation were not cut from a single region.

The isotropic grades were cut in only one direction. The ATJ
block was sectioned in order to obtain the two basic orthogonal orienta-
tions: with the long dimension parallel to the production pressing
direction and with the long direction perpendicular to the pressing
direction. Parallel and perpendicular specimens were similarly cut
from the ZTA billet. In addition, specimens that were oriented 30°
and 60° to the pressing direction were cut from the slab obtained from
the second billet.

Specimen blanks were machined from the sectioned billets. Both
the ZTA and ATJ blanks measured 8.00 by 2.000 by .750 inches, whereas
the AXF-5Q and AXZ measured 5.00 by 1.250 by .625 inches. All of the
blanks obtained from the billets of the two latter grades were machined
into either fracture toughness or tensile specimens. The ZTA blanks
cut at 30O and 60° to the pressing direction were all made into tensile
specimens. Eight blanks randomly selected, were chosen for each of the
conditions of orthogonal orientation and specimen type from the remain-

ing ZTA and ATJ.
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2.3 Specimen Designs for Mechanical Testing
2.31 Fracture Toughness Specimens

The sizes of the fracture toughness specimens were designed to be
as large as possible consistent with the bulk material geometries. The
particular specimen geometry used was a modification of standard center-
notch specimen.(zu) A center-notch fracture toughness specimen was
selected so that the results could be correlated with the tensile test
results. This presumes that tensile failures originate at internal flaws.
Preliminary tésting using the standard design revealed that a significant
number of specimens broke through the loading pin-holes even though a sharp
notch existed at the midpoint. The pinhole region was therefore increased
in thickness. The specimen shown in Figure 2 was used to test both ATJ
and ZTA and that in Figure 3 to test AXZ and AXF-5Q. ATJ samples with
gauge thicknesses ranging between 0.30 to 0.50 inches were initially
tested. WNo differences in the Ky, values as a function of thickness were
discernable, indicating that the test conditions were plain-strain for
specimen thicknesses in excess of 0.30 inches.

The center crack was created by end milling a 2 inch long by
1/8 inch deep groove of width equal to the desired crack length in the
specimen blank. A thick webbed I-beam cross-section was achieved. A
1/8 inch diameter hole was drilled through the minimum thickness at the
center of the specimen and notched perpendicular to the blank length
with a shallow saw cut. The width of the specimen was compressed'

tightly in a vise to give a slight tensile stress along the length axis.
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A polyethylene rod (1/8 inch diameter and slightly longer than web
thickness) was inserted and then compressed in a table model Instron
testing machine using fixtures designed for the task. The compression
generated a hydrostatic force which caused the specimen interior to
fracture perpendicular to the specimen length. The induced crack
proceeded across the web, but was stopped by the thickness increase at
the exteriors of the specimen width. The blanks were subsequently
machined to their final dimensions. In this manner, a natural center-
cracked specimen was obtained. Crack lengths were varied between 0.69
and 0.90 inches for the larger specimens and between 0.45 and 0.61 inches

for the smaller specimens.
2.32 Tensile Specimens

The tensile specimens were designed to be similar to the fracture
toughness specimens so that the results of the two tests would correlate.
The initial design used was identical to the fracture toughness specimen
without the center-crack. However, specimen failures in the pin-holes
necessitated a further reduction in the cross-sectional area. This was
achieved by reducing the specimen width resulting in the specimens shown

in Figure 4 and 5.

2.33 Ring-shaped Specimens

In order to microscopically study the behavior of graphite under

(7)

gstress, ring-shaped specimens were prepared as suggested by Slagle.
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These measured 1.25 inches outside diameter, by .625 inside diameter by

.25 inches thick. The flat surfaces were metallographically polished.

2.4 Mechanical Test Procedures
2.41 Tensile Tests

Prior to testing, SR-U resistance strain gages were cemented to
the specimens in one of several configurations. Two types of gauges
were used: single grids, and overlapping double grids (oriented 90O to
one another). The single grid gauges were attached at the center of the
gauge lengths in pairs, on opposite sides of the specimen. The double
grids were also attached in pairs, but on adjacent specimen sides.

Testing was accomplished in a 10,000 pound Instron testing
machine. Ioad was transferred to the specimens by steel pin grips manu-
factured specifically for these tests. Alignment was accomplished through
the use of universal joints in the loading train. The specimens were
cyclically loaded and unloaded to successively higher maximum values
until specimen failure occurred. Referring to Figure 1 the procedure
used for each cycle was to increase the load (at a cross-head speed of
.02 inches per minute) to one half the cycle's maximum stress value.

The test machine was stopped and both the load (from the Instron's chart
recorder) and strains (as measured on a Baldwin-Lima-Hamilton SR-b4
Strain Indicator) were read. The calibrated loads were recorded to the
nearest pound and the strains to the nearest microstrain unit. Load-

ing was continued to the cycle's maximum value, then unloaded to half
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the maximum, and finally to zero; in each case load and straln values
were recorded under static conditions. Ioad and longitudinal strain
at failure were also determined. A number of tests were autographically
recorded on an x-y recorder. Most of the single grid gauges were wired
to average the resistance changes of the individual gages, although on
a few specimens the strains were recorded individually to check the
alignment. The double gauges were all recorded individually, two longi-

tudinal and two transverse readings per specimen.

2.42 Fracture Toughness Tests

Two single grid strain gauges were cemented on each of the
fracture toughness specimens. On the larger specimens these were placed
longitudinally one inch above the crack (to remove them from any region
of stress intensification) on opposite edges (the minimum dimension sur-
face). On the smaller specimens, one was placed on each of the opposite
faces (the maximum dimension surface), 3/4 inch above and below the crack.

The test procedure used was the same as used for the tensile tests.

2.43 Ring-shaped Specimen Tests

A load application device was constructed which consisted of two
3 inch long parallel bars with 1/4 inch holes drilled near either end of
each. Two 1/4 inch bolts were inserted into the holes. The ring speci-
men, properly orien£ed, was centered in the assembly and load was applied
by alternately tightening nuts threaded on the bolts. No attempt was

made to measure the load.
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The procedure consisted of visually observing or photographing
the region near the inside diameter between the load application points
with a Leitz Wetzlar metallograph. This was done prior to loading and

after successively increasing loads.

2.5 Densities

Samples for density measurements were cut from the broken
tensile specimens from the regions where the fractures occurred. These
measured approximately 1/2 inch square by the thickness of the specimen.
The densities were assessed from the specimen buoyancy in water. The
procedure consisted of: weighing the sample and a thin wire separately
in air using an analytic balance, paraffin coating the sample with the
wire attached, and re-weighing in air. A final weighing of the coated
sample was made while it was submerged in a water bath to a specific
depth. The total volume (graphite plus paraffin) was determined from
the weight difference in air and water, and a knowledge of the density
of water. From a similar density determination of the paraffin alone,
the volumes of paraffin on each sample were determined from the paraffin
volume subtracted from the total volume. The graphite density was then

the graphite sample welght in air divided by its volume.

2.6 Crystallite Preferred Orientations

Crystallite preferred orientations of the graphites studied

were determined by a transmission X-ray diffraction technique which is

26)

a modification of one used by Bacon.( Samples were cut from the
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fractured regions of the tensile specimens and ground to a uniform
thickness of approximately 1 millimeter. These were placed in a fixture
which had the capacity to rotate the specimen 360o about an axis at the
Bragg angle from the beam. The fixture was set on a General Electric
Model XRD-5 X-ray Diffraction Unit, the plane of the specimen having
been rotated 130 (the Bragg angle for the 0002 plane) from the copper
tube X-ray beam. A scintillation counter was set at 260 from the beam.
The specimen was oriented initially with the pressing direction in the
plane of the initial and diffracted beams. X-ray tube voltage was 48kv
at 26 ma current. Counts per 10 seconds were recorded. The specimen
was rotated about an axis normal to the pressing direction in 50 incre-
ments for a total of 1809 Scintillation counts were recorded at each
step. To ensure that the measurements were not affected by drift in
the X-ray equipment, the procedure was duplicated for each specimen
measured, giving a total of four data points per angular setting per

specimen. The procedure proved to be very repeatable.
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3.0 RESULTS AND ANALYSES

3.1 Tensile Deformation of Polycrystalline Graphites

3.11 The Iongitudinal Stress-Strain Curves

Typical measured stress-strain curves for the graphifes‘and
orientations investigated aré presented in Figures 6‘through 13. These
were obtained by cyclically loading the tenslle specimens between zero
and sequentially higher stresses until failure occurred. TFor clarity,
not all the cycles”measured are shown in some of the figures. The
general shape of these curves conform to those obtained by other in-
vestigators. The features have been previously outlined in section 1.12,
and generally fit the description of Jenkins on the loading and reload-
ing curve sections. However, since half the hysteresis loops are deci-
dedly asymmetrical, this analysis is less than satisfactory in its des-
cription of the unloading curve.

The average total stress, Cfm, versus total strain, Ej“ curves

(thick lines) are shown in Pigures 1k through 21. Included on these
figures are the mean failure stresses, Cjé, the mean failure strains,
€¢> and the ranges of stress-strain values measured (narrow lines).

The qualitative effects of the physical properties on the mechanical
properties can be observed in the summary plot, Figure 22. For pressed
graphites, the stresses required to achieve a given straih i#Erease with
the aﬁgle‘of_the tensile éiié,to fhé pressiné direétion. Also strengths
increase and strains to failure decrease with this orientation angle.
However for constant particle size (ATJ and ZTA), the deformation curves

averaged over the various orientations are comparable. The grades with
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finer pérticle sizes (AXF-5Q and AXZ) have greater elongations prior

to failure énd also have greater strengths than coarser particle grades
(ZTA and ATJ) when avéraged over all orientations. Bet%een the two
isotropic grades, increase in density (AXF-5Q with respect to AXZ) in-
creaséé the stress required to attain a given strain, the strength, and

the failure strain. Finally, the Young's moduli increase with both

density and angle from the pressing direction.

3.12 The Transverse Stress-Strain Curves

The results of this series of tests were erratic. Several lots
of strain gauges were used in the tests, some of which proved to be
faulty on examinaﬁion 6f the data after testing. Typical stresg-strain
curves from the valid tests are presented in Figures 23 through 28.

For clarity, only two stress-strain cycles are shown for each of the
longitudinal and transverse curves. The shapes of the transverse curves
are in general agreement with those determined by Seldin.(lo However,
in contradiction to Selden's results, hysteresis loops are‘apparent in
most of the figures. These transverse curves also show positive perma-
nent sets at zero stress after unloading. Combined with the positive
longitudinal permanent sets, a volume increase occurs. For the
graphites tested the[}V/V ranged between .0005 and .0016 at fracture.

Thé slopes,of the maximum'stressbcyﬁ, versus total transverse
strain4are showh to ihcreaée with increasing deformation. Just as the
curvaturce of the longitudinal stress-strain curve (Cfm versus € ) can

be largely attributed to the positive residual strain component,{;o,
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the opposite curvature of the transverse curves is also due to the posi-
tive permanent set. Negative transverse residual strains (as those ob-
served in compression testing by Seldin) cause the longitudinal and
transverse curves to have similar shapes, i.e., a decrease in slope with
increasing deformation. It is difficult to justify the above observa-
tiong with a slip mechanism. The major conﬁribution to the permanent
set is probably the relief of internal stresses by the creation of
internal cracks during deformation.

Values for Polisson's ratio, Lﬂ were obtained from the data, and
are given in Table 2 along with the values for ATJ and ZTA reported by
Seldin. The latter were based on the ratio of the total (non-linear)
strains. In the present case, only the linear strain components were
used by taking Poisson's ratio to be the negative of the ratio of the
slopes near zero stress of the transverse to the longitudinal stress-
strain curves. These values were determined on the loading curves of

the last cycle prior to failure.

3.13 The Relationships between the Measured Strains

During the cyclically stressed tensile tests, three strain
measurements were made for each load application cycle: (a) the initial
value at zero stress, S, (the residual strain)j (b) the total strain at
half the stress of the previous maximum stress that had beén applied to
the specimen, f;%A; and (c) the ﬁotal strain at the feapplied maximum
stress,fﬁn . 'The latter value generally agreed reasonably well with the

ehlvalue determined on the initial loading to the particular maximum
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stress, with slight disparities at higher levels ofvdeformation. Plot -~
ting those straing versus one another reveals interesting relationships.
Tn Figures 29 through 36, €ﬂ3js plotted as a function of both E}land
E‘% for the various'graphites'and orientations tested. Ignoring the
initiai tfansitioq région,at low strain values, the relationships are
seen to be‘lineaf. ’in.most 5f these figufes, the deviations of the data
points from the mean value line (heavy solid line) is relatively small.
However, even for the plots with larger deviations from the mean, the
linearity of the points from a single sample is excellent. The equations
of the mean lines were determined by regression analyses of the data
points where E@ exceeded 2x10 . The dashed lines represent the devia-
tions (three standard deviations) of the data points from the mean lines.
The symbols containing X's are extrapolations to the failure strains.
From these curves, it is apparent that a "steady state" relation-

I

ship between the strains is not achieved until E?o exceeds 2 x 10 ' (or
Gﬁ exceeds 5 x lO_)_L to 10 x lO_u, depending on the grade and orienta-
tion). The low deformation values of the stress-strain curves are shown
to be transitory. On the composite plot, Figure 37, the mean value lines

for 65 as a function of G}lhave been extrapolated back to zero values

of‘Eb , showing that a minimum value of €ﬁlis required to produce the

steady state increase in the residual strain. -

3,14 The Stress Dependence of the Nonlinear Strain Component

Jenkins has made a strong argument that the mnonlinearity of the

deformation of polycrystalline graphite is due to elastically constrained
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plastic deformation. Therefore, the total strain can be separated into
an elastic component and a plastic component. Slagle, on the other hand,
attributes the mnonlinearity to microcrack formation. The author believes
that the problem can be resolved by combining the two approaches. This
involves separating the total strain into three component strains rather
than two. FIn other words, when stress is applied, the materiél will
strain elastically, plastically and form microcracks simultaneously.
This is essentially the implication of Jenkins' equation 5 (the express-
ion that describes the reloading curve) if the residual strain is attri-
buted to the strain relief caused by the cracking. Therefore, the strain,

E\, at any stress,(j; can be expressed as:

1l

€=6 +€ + €, (30)

Generalizing equation 5:

€ =6 + a0 + 8d" (31)

1l

where A is the elastic compliance, B and n are constants governing
the magnitude of the plastic deformation. The implication of the linear
relationships between the measured strains presented in the prior section
is that the strain components given here are not totally independent.

By substituting the strains at two levels of stress, (e.g., Cfm

and l/2(jﬁ) a pair of simultaneous equations may be written:
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If the pair of stresses and strains refer to a single reloading cycle,
66 and A are equal in the two eguations, and the elastic component can

be eliminated:

l-n
€ +€ - 262 = (12 )0, (3)

The logarithm of this equation can be written:
l-n
€+ €-2€1 )= 1n(1-2 )+In B + n In d, (35)

If B and n are constants over a range of stress levels, their magnitudes

can be determined from measurements ofcxn, EQD Gb and 6?%

The results for the steady state region of the deformation curves
€ > 2x lO—u) are plotted on Figures 38 through 45 for the various
grades and orientations. The average values for n as determined by
regression analyses are also included. These range between 2.3 and 3.2
with a weighted average (based on the number of data points on each plot)
of 3.0. This differs from the derived value of 2 given by Jenkins, but
is in close agreement with the Vaiues experimentally‘determined on com-
pression annealed pyrolytic graphite.(B) Soule and Nezbeda determined
the stress dependence of this material and found that after strain

hardening, n approached a value of 3. It was decided to usge this
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experimentally determined value for all grades and orientations in the
subsequent data treatment.

The weighted average values for B, calculated by setting n to
equal 3, are also given in Figures 38 through L45. The range of B among
the materials examined is two orders of magnitude. 1In fact, the high
and the low values occur for two orientations of tﬁe same graphite: B

-3

for ZTA tested perpendicular to the extrusion direction is 16 x ldﬁL psi
and tested parallel to the extrusion direction is 1310 x 10—161351"3

This variation is to be expected 1f the plastic deformation is constrained
by the elastic strain. The value of B would then be a function of the
elastic modulus to the nth power. If the ratio of the moduli in the two

orientations were about 4.6, then the ratio of the B terms would be

expected to be 100 for n equal to 3.

3.15 The Stress and Strain Dependence of the Linear Strain Component

The elastic strain component ( €.y,) can be determined by solving

equations 32 and 33. At a given maximum stress per cycle,
0~ 0, A n-1
€on = ACh= [2°€1- €+ (12)6 /2" 1) (36)

Substituting the value of 3 for n, this equation becomes:

€n- a0 [864- € &/ D
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The elastic compliance (the reciprical of the elastic modulus) is:
A= 1B = €4 /0, (38)

Examination of the cjclically stressed deformation curves indi-
cates that théeslopes of the loading curves near Zzero stress\dgcrease
with deformation. When Vélues are substituted into equations 37 and 38
the compliance is shown to increase nonlinearly with increasing strain,
in agreement with the previous observation. This phenomena is expected
for systems which experience crack formation during deformation. To
determine the expected relationship between elastic compliance and de-
formation, a stress analysis was made on the effect of a single micro-
crack on the compliance. In addition, the effect of introducing a
multitude of independent cracks was determined. The results, detailed
in Appendix A, show that the compliance is expected to increase exponen-

tially with the volume fraction of cracks added, f.:
A = A; exp (k f¢) | (39)

where A; is the initial compliance and k is a constant dependent only on
Poisson's ratio. The relationship is independent of the size of the
cracks, assuming that they are spaced several crack diameters apart.

In the previous sections, the measured strains 60, €% and

E}lwere found to be linearly related. By simple algebraic manipulation

of the equationsg, the calculated elastic strain, Ekmn can also be shown
to be lincarly related to the other straing. The values for the various

strain relationships are given in Table 3. A plot of‘Eg versus €ém
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appears in Figure 46. The lines have been extrapolated into the transi-
tion region (the region of nonlinear strain dependencies) to zero values
of’€b. If the permanent set is interpreted to be caused by internal
stress relief due to strain induced cracking, and each crack is assumed
to yield a small constant increment of permanent set, then the number
of microcracks created will\beva linear function of the maximum elastic
strain applied. There is a value of E}ml(ranging between hxlO-u and
10 x lO—u) below which relatively few cracks are formed. The transition
region, to be consistent with this analysis is caused by microfractures
in regions that are relatively weaker.

If the fraction of cracks formed, fc, is then proportional to
the maximum elastic strain above some minimum threshold strain, €th)

then equation 39 may be rewritten as:
A= ay e [k (€ €4)] (40)

A plot of In A versus Gém should yield a stralght line of slope kc.

The value of A; can be determined ai;Eém_ equal to E%h' These relation-
ships are shown in Figures 47 through 53. The average values for ke

were determined by regression analyses. The exponential relationships
appear to be good for those materials that experienced large deformations.

The uncertainties axe greater for the lower deformations.

3.16 The Relationships Between the Elastic Compliance and the

Nonelastic Strain Components

In section 3.22, a method is described for determining the

complianceg of fully dense material, Ay from the experimental values.
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As indicated in section 3.14, n has been assigned the value 3. TIf the
experimental values of B, the coefficient in equation 31, are divided by

the cube of Ay, the nonlinear strain can be rewritten as:
€0 = o W 0)? (41)

where C, is a new proporfionality ébnstaﬁt of the stress dependence of
the nonlinear component. Whereas the B term ranged two orders of magni-
tude, the variation of Co is relatively small. With the exception of

the value of AXZ graphite (57X102), Co ranged between 22 x 102 to

ho x 102. The mean value was 32 x 102, with a standard deviation of

12 x 102. The errors result not only from experimental deviations, but
also from the approximation of setting the value of the stress dependence
n equal to 3. The large deviation of C, for AXZ results from its larger
deviation of experimental n from the mean value.

From the results of this treatment it is apparent that the non-
linear strains are related to the linear elastic constants and the model
of elastically constrained plastic deformation becomes credible. Those
crystallites which are favorably oriented for shear, do so plastically
because of the extremely low critical yleld stress. The extent of the
shear deformation resolved to the stress direction is limited however
by neighboring regions which are not similarly oriented and therefore
gtrain elastically. Coﬁsequently the extent of elastic strain controls
the deformation.

It can be argued that this mechanism occurs on the crystallite

scale rather than on the flour particle-binder scale because of the
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success of the calculations. The term A&j& is the contribution to the
elastic strain of the crystallites and is only dependent on their
preferred orientations. Attempts to make similar calculations using
the macroelastic strain, Eém = AUy, were less successful and led to

variable values of n.

3.2 The Effect of Density on the Elastic

Modulus
3.21 Experimental Densities of the Tested Graphites

The average densities in grams per cubic centimeter of the four
graphite grades tested were: (a) ZTA: 1.90 (s=0.03); (b) ATJ: 1.65
(5=0.03); (c) AXF 5Q: 1.73 (s=0.01); and (d) AXZ: 1.51 (8=0.03); where
8 1s the standard deviation. The volume fraction of porosity, fp, was

calculated from the relationship:

ﬁp = (dth - dex) / dep (h2)

where dyy is the theoretical density for graphite (dth = 2,26 grams per
cubic centimeter) and dex is the experimental value. The average volume
fractions of porosity of the four grades were: (a) ZTA: 0.158 (s= 0.01k4):
(v) ATT: 0.270 (8=0.012); (c) AXF-5Q: 0.235 (s=0.006); and (d) AXZ: 0.332

(s=0.012).
3.22 Calculation of the Elastic Moduli of Fully Dense Materials

A variety of relationships to determine the elastic moduli of

graphite as a function of densities (or pore fractions ) have been
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propoSed. Some investigators have shown linear fits between the

(13,16,17,28)

moduli and the pore‘fractions. Others find the moduli to
be exponentially related to the pore fractions.<29) Power functions
and polynomial fits are also commonly used for ceramics. In the present
investigatipn,'the spread in the density values for a particular grade
were not sufficiently large to experimenﬁally determine which of the
proposed treatments should be used to determine the moduli of the fully
dense materials. The relationship was therefore theoretically derived
from continuum elasticity theory in Appendix B.

It is shown that the exponential dependence for the modulus of

(30)

a sample, empirically developed by Spriggs, is valid and:

=
]

Eo exp (- kpfp) (43)

where Eg is the modulus of the fully dense material, fp is the volume
fraction of pores, and kp is a constant for a given material, analy-

tically found to be (for spherical pores):
2
- _R__u (a+Y L (1) L
£ 1L -10)) ’ T ) (k)

where }J is Poisson's ratio. Equation 43 is independent of pore size,
but kp and therefore E would be affected by the pore shape.

By changing ) by an order of magnitude (from 0.03 to 0.3), the
magnitude of k; is only changed by 50 percent (from 6.6 to 9.7). Since
kp ig in the exponent of equation 43, E is thus n?t ?rastically affected

29

by Poisson's ratio. Experimentally, Cost et. al. found kp to be

3.5 for a series of isotropic graphites. This value agrees with the
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average value determined for alumina (kp=3.h) by Spriggs.<30) The
digscrepancy between the theoretical and experimental values is attri-
buted to the assumptions involved in the calculations, i.e., spherical
pores in a homogeneous isotropic solid. That the theoretical magnitude
s higher than the experimental one is consistent with the results of
Bazaj and Cox.(sl) These investigators evaluated the stress concen-
tration factors for a fine particle size graphite by testing round-
notched tensile specimens. The ratio of the theoretical (Kth> to the
experimental (K.) stress concentration factors were 1.3 for 1/4 inch
radil notches, and 1.5 for 1/16 inch radii. Solving the equations for
a pore size radius of 0.0005 inches, Kth/Ke is 4.0. Although this
extrapolation is not exactly valid, (the equations are shown to deviate
from experiment when the radii approach the size of the particles), the
relative differences between elastic continuum calculations and real
materials are clear.

As a result of the above, the elastic moduli and compliances for
fully dense materials were calculated from equation 43, using a value
of 3.5 for kp. The experimental densities and the compliances (Aj in

equation 40) provided the other input values. The data and the moduli

versus pore fraction functions are plotted in Figure Sh.
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3.3 The Effect of the Preferred Orientation

on the Elastic Modulus

3.31 The Relative Planar Densities of Basal Plane Normals

The X-ray intenéities of (0002) plane defractions were measured
incrementallykas a function of the angle from the pressing direction in
a plane which contained the pressing direction. The results were sub-
jected to Fourier analyses and the intensities, I (¢ ), as functions

of orientations from the pressing direction,ﬁ, were found to be ade-

quately described by a four parameter equation:
T (@) =al+a] cos 2 §+ap cos b g+ a% cos 6 @ (45)

The data were normallized to eliminate experimental variations between
tests by dividing by the mean intensity,za;, and multiplying by 1000

to eliminate fractional quantities. Equation 45 then becomes:

I (f) = 1000 +a, cos 2 § +aycos L ff +azcos 6 B (u6)

The average results and ranges are plotted in Figures 55 and 56
for the ZTA and ATJ respectively. Equation 46 is also given with the

average values of the parameters.

3.32 The Relative Densities of Basal Plane Normals per Unit Solid

It is of interest for some of the following sections to deter-

mine the relative density of basal plane normals per unit solid angle
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in order to relate preferred orientations to bulk polycrystalline pro-
perties. This density distribution differs from the experimentally
determined planar distributions. The latter is schematically shown in
Figure 57 (a) and (b). With reference to Figure 56 (c¢) which represents
a spherical volume of material,vthe size of an element of ?olume between

the angles of ¢ and @g+d@, and é? and ¢+ dé;is given by:
aw = sing ag af (47)

The relative number of basal plane normals (i.e., the density per unit

solid angle) which are oriented at this angle is then:

I(¢) av = I () sin @ d¢d§ (48)

The differences between the planar and volume distributions become appa-
rent at orientations close to the pressing direction. As ¢ approaches
0°, the relative intensity approaches its maximum in the former case
yet goes to zero in the latter as the volume element becomes smaller.
It is of further interest to generalize equation 48 to consider
cases in which the axis, e.g. the stress axis, differs from the press-
ing direction. Another distribution function must be generated if the
axis under consideration is rotated from the axis of symmetry as in
Figure 58. By vector transformation the planar relative intensity,
I (@) becomes I (K,/B,a), where (X is the angle between the new
axis and axis of symmetry,f( is an orientation angle from the new axis,
faiﬁ the rotational angle about the new axis. The transformation has

been derived in Appendix C. The density of basal plane normals per unit
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so0lid angle in the new coordinates is then:

I (K,/B,oo av. = I (K,ﬁ,O() sin K aK d/S (L9)

The treatment can be carried one step further by performing the
integral with respect to‘tg., This has also been done in Appendix C.
The result is the density of (0002) plane normals per unit solid conical

angle:
L(K,Q0 av = (/) sinK aK (50)

The average intensity values determined by X-ray diffraction
have been processed by the above treatment. The results for ZTA, for
axis orientétions,cx, of OO, 300, 600, and 90° are shown in Figure 59.
Densities for orientations of 0° and 90° for ATJ are given in Figure 60.

Figure 61 contains an equivalent curve for the isotropic case.

3.33 The Calculated Elastic Moduli of the Polycrystalline

Materials

There have been several papers written on the subject of the cal-
culation of the polycrystalline elastic modull of graphite from a know-
ledge of the crystal elastic constants and of the preferred orienta-

(32,33)
S.

tion The varilous methods used take the same fundamental appro-
ach. The relative (0002) density distribtuion functions of @ are multi-
plied by the crystal elastic modulus function of ¢. This is then

integrated over all the orientations and divided by the density integral

to give the average modulus.
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The uniaxial stress models used are of generally two types:
(a) constant applied stress, as shown in Figure 62 (a); and (b) constant
applied strain as shown in Figure 62 (b). Price(32) has given the re-

lationships for these. For constant stress:

72

) () sing ad (51)
Ey = 0 |
72 |
. 1(¢) [JJE(¢) ] sin g 4 ¢ |
For constant strain: 7?—2
() E(f) sin § af
jEe = - (52)
| (e

I (@) sin § ap

0

where I (@) sin @ d @ is the relative density of {0002) directions per solid
angle as a function of the angle ¢ from the axis of symmetry, and where:

1

4 n
1/E(g)= 833 (B) = sqq sin @+ 833 COS ¢ (53)
+ (gput 2s13) sin° ) cos2 )
for the stress axis parallel to the axis of symmetry, and:
' L .
L/B(@)= 513(#) = sy; cos” § +833sin P, (5k)
+ (shh+ 2313) sin~ @ cos® ¢

for the perpendicular stress axis. The 845

j are the elastic compliances of

the hexagonal crystal.
The models of constant stress and constant strain give the extreme
values of the possible average polycrystalline moduli, since the actual

state of each crystallite must be intermediate to be in the lowest strain

energy configuration.
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Price shows that the constant stress model produces the better approxi-
mation. Since syq is very much smaller than 533> the contribution of
the reciprocal of sq7 overwhelms 333 reciprocal. In the constant strain
model, most of the stress is supported by the particles oriented to have
high moduli, and the resulting calculated average moduli are very much
too large. The converse is true in the constant stress model. It should
be noted that both models are unidirectional‘and do not consider lateral
interactions between crystallites.

Slagle(33) has proposed that the above models can be modified to
give intermediate states. By considering pairs of particles which are
in a state of constant stress with respect to one another, a modified
constant strain model can be developed by placing the pairs in turn in
a state of constant strain, as in Figure 61 (c). Similarly, a modified
constant stress model can be generated, as in Figure 61 (d). An obvious
extension of this would be to consider three and four particle combina-
tions. As developed by Slagle, the two particle models are also uni-
directional; i.e., the particles are considered to be sufficiently long
so that the strain interactions between particles at the interfaces can
be neglected and the transverse stresses set to zero. Since the particles
are nearly equiaxial, the models are somewhat deficient, yet the results
are considerably better than the single particle models.

In an attempt to account for the transverse strain interactions,
the modified constant strain model was extended in the present work to
consider short particles. Complete transverse strain interactions be-
tween individual particles in each pair are accounted for. These give

rise to transverse stresses which in turn modify the axial stresses.
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The derivation of this model along with the long particle model is
found in Appendix D. Calculations of the average elastic moduli were
made utilizing one, two and three particle models. These were evaluated
by determining how closely the experimental values were approximated
and by how closely the ratio of the modulus normal to and‘parallel to
the pressing directions were approximated. Since the shear compliance,
shl, is known to be variable within the limits of 0.2 x 10—10 to

10 x lO~lOcm2/dyne, several models could be adjusted to give magnitudes
close to the experimental ones. However, the criterion of the ratio of
the moduli was best met by the models of Appendix D. This ratio is
slightly high for one of these and slightly low for the other.

Since each of these cases represent the extremes of the same
model (very long or very short particles in the stress direction), it was
decided to average the values to approximate the intermediate actuality.
The curves in Figures 63, 64 and 65 are the average of the calculations
as a function of sl for ZTA, ATJ and the isotropic grades respectively.
Included in the figures are the experimental moduli, the band represent-
ing one standard deviation.

For ATJ and ZTA, a magnitude of a s)) between l.lxlo_locmz/dyne
used in the calculations would give reasonable results. For the two
isotropic grades, agreement between experiment and calculation occurs
for an s)), range between 0.8 x 10" and 1.0 x lO—locm?/dyne. The sensi-
tivity of the calculations to the basal plane shear compliance is
apparent in the figures. The degree of crystallite perfection is

therefore very important to the overall elastic modulus of the poly-

crystalline material,
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3.k Microscopic Observations During

Deformation

In an attempt to determine the mechanics which lead to fracture
in the graphites investigated, ring-shaped specimens were observed under
a microscope as deformations were brogressively increased. Due to a
regolution difficulty, the observations for the fine particle grades, AXZ
and AXF -5Q were inconclusive. However, for both ATJ and ZTA in all
orientations, the results were in agreement with those presented by
Slagle(7) and Knibbs.(18> It would be expected that the processes for
the fine particle materials should be similar.

Figures 66, 67 and 68, are a series of composite micrographs
taken of a ZTA specimen oriented such that the pressing and tensile stress
directions coincided. This orientation was selected because the pref-
erential orientation of the flour particles intensifies the effects, and
clearly shows the stages of failure. Figure 66 shows an area near the
inside diameter of the ring prior to deformation. As the specimen was
incrementally loaded, the same area was examined. The first cracks to
form were those near the I.D. As deformation continued, the depth to
which independent cracks formed progressively increased. Figure 67 is
a composite of the area under high stress prior to fracture, and the
fracture is shown in Figure 68.

Although the micrographs are of the surface and the effects in
the interior (due to the triaxiality of the stress state) should be more
influential in the fracture, certain observations can be made.

It is clear from these micrographs that the flour particles tend
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to fall by a cleavage mechanism normal to the gpplied tensile stress.

In Figure 67 the first cracks to form were those in the regions A, B

and C. The long cracks between D and E and between B and G formed by a
crack linkage mechanism, i.e., separated cracks were interconnected via
a path through pores and around particles not suitably ofienﬁed. The
pore structure may or may not cause the termination of a crack. Examples
of cracks between pores are at I, J and K. Examples of cracks ending
within the flour particles are at E and H.

A comparison of Figures 67 and 68 shows that the final fracture
path is initiated at major crack linkages, e.g., between B and G. The
crack continues through favorably oriented flour particles and around
others. The pores as well as some of the previously formed cracks may
be excluded from this path. For example, rather than including either
the crack at J or the major pore to its left, the fracture proceeded
between the two. A certain amount of branching from the major fracture
is apparent. Whether this occurred prior to, during or subsequent to

the fracture passing through the region is not certain.

3.5 TFracture Toughness

The results of fracture mechanics are commonly presented in the
form of two parameters. From a knowledge of the specimen geometry, the
gsize of the crack and the failure load, either the critical étress
intensity factor, Kyes or the critical crack extension force, Gy,, can
be used to describe the fracture toughness. 1In general, these are

material parameters which can be utilized to predict failure loads in
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the given material for crack sizes and geometries other than those of
the test specimen. The value of KIC is related to both GIC and the
elastic modulus. Since in polycrystalline graphites the modulus is
dependent on such variables as stress axis orientation and the density,
K1e is a constant oply‘if these variables are held constant. The Gy,
should be relatively independent, though not totally, of such condi-~
tions.

The test results from the standard notched specimens were analy-
zed using the equations given in the literature.(euﬁgs) The critical

stress intensity factor is obtained from:

oj=

K. = Y ¢

5 2
e - [1.77 +0.277 (5)-.510 (2__;) + 2.7(-@.%)3] (55)

where P is the fracture load, W and B are specimen width and thickness,
and ¢ is one half the initial crack length. For plane strain conditions,

the critical crack extension force is related to KIC by:
2
Gre = Kpo (1) /E | (56)

where }/) is Poisson's ratio and E is the elastic modulus. These relation-
ships are determined for isotropic materials, but should be approximately
valid for the anisotropic case for bulk polycrystalline materials. To
simplify the treatment where l) was directionally dependent, an average

2
value was used. This error should be small sincel} is small. The value

of the modulus used was the experimental one determined on each fracture
toughness specimen at a reasonable distance from the crack. To account

for the variation of E with deformation, the values used were found by
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extrapolation to the failure strains. The mean K1e and Gy, magnitudes
are given in Table L, along with standard deviations.

On examining the results, the effects of orientation on KIC are
obvious. For ATJ, which has the same Gy, in the orthogonal directions,
KIc is 20 per cent greater in the with-grain direction. For ZTA, a
25 per cent difference in Gy, corresponds to a 120 per cent difference
in Ky, at the two orientations.

The mean Gp, values for the various grades appear to be density

dependent. It will be recalled that Gy, can be considered as equivalent

to twice the surface energy in the Griffith equation. Its value would
be expected to vary linearly with the new surface area created by the
crack and this area would decrease linearly with the pore fraction.
Figure 69 is then a plot of Gy, versus the average volume (or area)
fraction porosity. The mean line (heavy solid line) as determined by
regression analysis is plotted along with the standard deviation of the
data points from the mean line (the broken line). The mean line equa-
tion is also presented.

The differences in Gyc observed for ZTA graphite in the ortho-
gonal directions can be accounted for by a similar argument. Examina-
tion of the fractured surfaces shows that the total surface areas of
the specimens tested with stress axes perpendicular to the pressing
direction is greater than those tested parallel. The cracks run perpen-
dicular to the stress axes in both cases. However, because fewer flour
particles are favorably oriented in the former case, the microscopic
path is more devious. The Gy, in this direction would be expected to be

greater than that tested parallel by the ratio of the surface areas.
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4,0 DISCUSSION

4.1 Deformation of Polycrystalline Graphites

The controversy with regard to the deformation mechanisms of
polycrystalline graphites has prompted the present re-evaluation. From
the treatment of the test results in the previous section, it 1s appar-
ent that the stress-strain curves cannot be adequately described by the
analysis of either Jenkins or Slagle, exclusive of the other. Rather,
a combination of the two is required.

The nonlinearity of the total strain, G}p at any given stress,
Cﬁh according to Jenkins can be attributed to two component strains:

a linear strain, and a non-linear strain. Slagle, although he does not
give equations, effectively agrees with the two component analysis, but
argues that the non-linear component is attributed to internal stress
relief by deformation cracking rather than basal plane shear. It has
been shown in the present work that the deformation is more adequately
described if the strains are separated into three components: elastic,
Gé, plastic, Ei” and internal strain relief, 65. The strain at any
gstress level ig then the summation of the three.

In the following sections, these three components of the strain
will be discussed in detail. Also, an analytic expression based on a
synthesis of the results in section 3 will be given for the deformation

of polycrystalline graphites.
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.11 The Residual Strain Component

The evidence obtained in this study indicates that the residual
strain component is attributable to crack induced internal stress relief,
rather than to plastic deformation. The internal stress arises in the
polycrystalline material during cool-down from the graphitization tempera-
ture. There exists differences in both the thermal expansion coefficients
and the elastic constants between neighboring crystallites as a function
of orientation differences. The crystallites adjust their strains in
all directions in such a way as to achieve the lowest strain energy. If
a single crystallite fractures, the balance of stresses and strains in
all directions in the proximity readjusts to a new configuration. 1In
other words, if a crack occurs in a particle normal to the applied stress
direction;, lateral as well as axial strain adjustments would be expected.
The positive permanent sets observed in both the axial and transverse
deformation curves are the consequence of this three dimensional strain
readjustment.

Clearly, the residual strain is an extremely complex phenomena
dependent on the complex internal strain which in turn, varies with the
preferred orientation of the crystallites, the temperature from which
the material is cooled, the elastic constants (chh especially), the
crystallite size, etc. Therefore, a comparison of the curves in
Figures 29 through 37 shows no discernible relationship between the
grades. However, the pattern is the same for all the graphites and

orientations tested. There is an initial transient period during which
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little increase in €, with €, (or€, ) occurs. Subsequent to sur-
passing a critical strain value, linear dependencies between these
strains arise. If each crack contributes to a comnstant increment of
Eb, then the number of cracks formed is a linear function of the maximum
applied elastic strain. Further, the rates of increase of‘€5 with Eém
are then expected to be functions of the humber of cracks formed per
maximum elastic strain increment, the sizes of the cracks formed, the
magnitude of the internal stresses, and the internal stress distribution

Jenkins, on the other hand, proposes that the residual strain is
caused by plastic deformation in the basal plane. Examination of the
65 versus E}lcurves for ZTA graphite shows that the slopes continually
decrease with increasing stress axis angle from the pressing direction.
If the residual strains were plastic, it would be expected that the inter-
mediate orientations which are better resolved for shear would have
higher slopes than the principal orthogonal directions. Except for
perhaps, a small fraction the permanent set phenomena cannot be attri-
buted to plastic deformation.

Pinally, it should be noted that the residual strain is strain
dependent for a given material and orientation. This is evidenced by
the good fits of the data points to the average €o versus Gm lines,
especially in certain grades, and the small slope differences between
orientations. The stress dependence of‘€b is then the magnitude that

gives the correct Gh or Eém value.
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4,12 The Elastic Strain Component

The analytic treatments detailed in the appendices give the re-
lationghips between the physical status of polycrystalline graphites and
the elastic deformation. In appendices C and D, a method is described
to determine the elastic compliance of fully dense material as a function
of preferred orientation. The effect of porosity on increasing the
compliance is derived in Appendix B. Finally, the further increase in
the elastic compliance due to deformation cracking is established in
Appendix A. Therefore, in principle, it is possible to determine the
elastic strain of a polycrystalline graphite at any stage of deformation.
However, due to the expected discrepencies between real materials and
physical models, some of the parameters must be experimentally deter-
mined. The intent of section 3.1 was to measure these parameters.

From the results of section 3.3, it was shown that the elastic
properties of fully dense materials are effected primarily by the sy,
value. The basal plane shear coefficient is variable between graphites
and is dependent on such things as crystallite perfection and disloca~
tion pinning. But, these in turn are difficult to measure and con-
sequently lead to inherent uncertainties in the calculations. In spite
of the difficulties, the calculations give reasonable results.

The compliances of materials less than theoretically dense have
been shown to be exponentially dependent on the volume fraction of pores.
The rate constant calculated is two to three times higher than those
experimentally determined by other investigators. Due to the ideality

of the model, this difference may be considered to be small and the
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model considered to be in good agreement with the data. That other
investigators find linear relationships between elastic properties and
pore fractions is explained by the near linearity of the exponential
curve in the pore fraction range between 0.15 and 0.35. Since most
graphites fall into this range, the choice Eetween the linear or ex-
ponential dependencies is generally of small consequence. However, if
extrapolation out of this range is important, the analytically verified
relationship should be used.

It has been established from elasticity theory that for a poly-
crystalline material, the compliance is exponentially related to the
number of cracks introduced, independent of crack size. Jenkins, on the
other hand, from plasticity theory derives a linear dependence, thus:

A = A (14 5—77%35—) (57)

where A; is the compliance of the crack free material, n is the number
of cracks of size 2c¢, d is the grain thickness normal to the basal plane,
and g, g' and g" are geometric factors. It is difficult to experimen-
tally assess the crack densities as a function of deformation, and there-
fore selection of the correct dependency is not possible. However, a
self consistent argument has been developed in this thesis to show that
the exponential relationship is to be preferred: If the number of
cracks, n, are linearly dependent on the elastic strain, Eénl(as is the
strain due to internal stress relief by crack formati@n,eg), then the
elastic compliances should have the same dependence on both n and fsem'
On this basis the derivation founded on the elasticity model rather than

the Bilby-Cottrell model has been selected to describe polycrystalline
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graphites.

4.13 The Plastic Strain Component

The plastic strain, Gb, has been shown to be proportional to
to the nth power of both the elastic compliance and the stress, where
n is approximately 3. The compliance that gives the best relationship
is the one obtained on extrapolation to full density: Ay. This 1s the
elagtic constant associated with the preferred orientations of the
crystallites. The model proposed by Jenkins, whereby the plastic de-
formation is limited by the amount of elastic strain occurring, appears
to have validity. Jenkins uses the same model to explain the residual
strain component as well and therefore strays from the physical reali-
ties. The equation given for the initial loading curve (equation 3) can
be used to empirically describe the transition region of (7; versus
E}n. Jenkins however suggests that at high deformations, this curve
becomes asymptotic to some overall yield stress value due to the incre-
ased plastic deformation associated with the stress concentrating
cracks. Evaluations in the present work indicate that the plastic
component is relatively unaffected by the deformation cracks. Further,
the author is convinced that the cause of the deviations from Jenkins'
parabolic equation of stress dependence is actually twofold. First,
the stress dependence of the plastic strain is more nearly cubic; and
second, at higher deformations, the linear increase in fk)with maxi-
mum elastic strain must be added along with €ém and Eé)to obtain the

<
value of Cyp .
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On the other hand, Slagle's denial of the existence of a
plastic component is contrary to observation. The only deformation mode
observed on single crystals which shows non-linear behavior and hysteresis
loops is that of basal plane shear. Slagle recognizes the importance of
the S, elastic constant in determining the polycrystalline elastic

(32)

modulus. However, due to the extremely low critical yield stress
observed for basal plane shear, the linear portion of the deformation is
extremely small. Most of the shear deformation curve is nonlinear with
a strain hardening coefficient between 3 and 4. Hence, the linear
elastic portion of the polycrystalline stress-strain curve would also be
expected to be nearly nonexistent. Another way of viewing this is that

Sy in equations 53 and 54 is not a constant, but is deformation de-

pendent.

4.1} The Deformation Equation

The stress and strain dependencies of the three strain compo-
nents have been determined in Section 3.0. The analysis of this work
indicates that a single equation can be written to describe the deforma-

tion for both the initial loading and reloading cycles:
n
€ = a0 + 8O+ € (58)
or:

€ = 10 e ity el €) ]+ o[R0] € (9
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where:

A = +the elastic compliance of a fully dense polycrystalline
graphite dependent on the degree of preferred orienta-

tation , inz/lb 3

kp = +the rate of compliance increase per unit fraction
porosity;
fp = the volume fraction porosity;
k .= the rate of compliance increase per unit elastic strain
increase;
Egm = the elastic strain component at the maximum stress,(jg,

that the material has been subjected to;

E%h = the threshold elastic strain;
. 2
( = the stress, 1b/in" ;
Co = the proportionality constant of the stress dependence

of the nonlinear strain;
n = +the power function of the stress dependence of the
rrrrrrrr é nonlinear strain;

Eb = the residual strain (permanent set) which is linearly
dependent on either the maximum total strain that the
specimen has been subjected to or equivalently, the
maximum elastic strain.

An equation for the unloading curve equation has not been determined due
to the inconsistency of d?Cf/dEfg between the various grades tested.
Several problems arise in the use of equation 59 to describe

the initial loading curve, E}lversus Cﬁn. Since the elastic compliance
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is dependent on E}m“ the elastic strain is dependent on itself. Also,
6})js dependent on Eémf This problem does not arise in Jenkins' simpli-
fied treatment. However, examination of equations 7 through 13 in which
the equations are modified to account for cracks, shows that a similar

problem occurs. All of these contain the factor Q which is a constant for

a given crack population. If the number of cracks increase with deforma-
tion as observed, Q must also vary. Jenking analysis consequently suffers
from the same problem.

The other deficiency of equation 59 is that it only gives the
relationships between stresses and strains at higher deformations, in
the regions of steady state. This is of small consequence, since it
has been shown that at low deformations, the state 1s transitory. Again
the Jenkins modifications suffer from the same problem, and he empiri-
cally uses his simplified equations to describe the transition region.

The parameters for eguation 59 are given in Table 5. The power
function, n, has been universally set to 3, the average value. With the
exception of AXZ graphite, whose experimental value is 2.4, this is not
""""" a poor approximation since the calculated values of C, are reasonably
close for the other grades and orientations.

Using the average values for C,, 32 X 102, and n, 3, the stress-
strain curves have been calculated from these data and are plotted in
Figure 70. These curves correspond reasonably well with those on
Tigure 22 since they are syntheses of the analyses performed in

Cection 3.0. The slight deviations between the two figures result from

the use of average properties wherever possible. The calculations would

still be more functional if the dependencies of k, armléb on €ém could
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also be related to the physical properties. The complexity of those
relationships has previously been explained, and other than qualitative
explanations, no success at definition has been achieved. Since both

k. and the rate of increase of 65 with Eém should be functions of the
numbers of cracks formed, they are themselves related. High kc values
correspond to high<i€b/ﬁ.€ém values. However, why the number of cracks
formed is a strain related function rather than a stress and strain
related function is elusive. In spite of the difficulties, our model
has approached the physical realities better than the previous ones.

To summarize the implications of equation 59, when stress is
applied to a polycrystalline graphite, several things occur simultan-
eously. The material strains elastically, the extent depending on the
initial elastic constant. In addition a certain amount of basal plane
plastic shear occurs with a strain hardening exponent of approximately
3. The extent of this plasticity is limited by the elastic deformation.
When the elastic strain surpasses a critical value, cracks are introduced
into the material at a rate proportional to the strain. Cracking causes
two effects: (a) the relief of internal stresses adding an increment
of strain to the above two components; and (b) an increase in the elastic
compliance due to stress concentration, which in turn increases the
elastic strain component. Unloading prior to failure causes the elastic
and plastic components to reverse themselves. At zero stress, the resi-
dual strain is composed primarily of the internal stress relief compo-

nent, although a small amount may be accounted for by unrecoverable
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plagsticity. On reloading, only the elastic and plastic components
change, until the previous maximum stress is exceeded. Hence, the
differences between the equation for the initial loading and the re-
loading curves are that in the latter case, the residual strain compo-
nent ig a constant, as is the compliance. In the former case, these

are strain dependent.

L.,15 Further Justification of the Deformation Model

The choice of the present elastic model over the Bilby~Cottrell
plastic model to characterize crack induced deformation in graphite can
be further justified. For the reasons previously cited, extensive basal
plane shear is not an operable méchanism. The questions then arise:
does a different plastic deformation mechanism exist and does the ex-
tensive non-basal plane elevated temperature plasticity have a room temp-
erature complement? It is of some interest then, to examine the latter.

(9)

Smith has shown from photomicroscopy that the large deforma-

tions above 2000°C are associated with cracked flour particles. As the
temperatures were increased above QSOOOC, the crack densities decreased,

but the individual cracks were longer and more widely opened. The plasti-
city is not accompanied by reductions in areas, and is due to the cracks

(1)

opening normal to their surfaces. This is confirmed by Zukas and Green
whose findings were previously outlined in section 1.22. In tension,
creep resistance of ZTA increased continuously as the stress axis was
varied from the pressing direction. The resolved stress normal to the

basal planes was shown to have the greatest influence on extent of
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deformation. Although the authors do not state it, the resolved normal
stress, in the tangential direction also controls the compressive creep.
Because the induced tensile hoop stress 1s lower in magnitude than the
axial stress and because the stress dependence on creep is very high in
polycrystalline graphite, the compressive creep rate is less than the
tensile creep rate at all orientations. The differences are greatest
when the stress axis coincides with the pressing direction, where the
fewest numbers of basal plane normals are tangentially oriented. The
creep rate differences in tension and compression become less for those
stress directions in which the density of tangentially oriented 0002
directions is high. The opening crack mode of deformation is also
microscopically confirmed in this work.

The Bilby-Cottrell model can be evoked to rationalize the
elevated temperature deformation, but again basal plane slip cannot be.
An alternative to this type of slip 1s called for. The answer is parti-

(34) on high temperature (2500°-

ally provided by the work of Fischbach
290000) creep of pyrolytic graphite. Tensile stresses were applied
parallel to the layer planes of this highly oriented material and strains
were measured in the three orthoganal directions. Up to 8 percent axial
strain, the volume was observed to increase slightly. This was associ-
ated with the increase in the transverse strain parallel to the layer
planes and 1s observed to be caused by dewrinkling of those planes
(elimination of kinks, twins, etc.). Above 8 percent to 34 percent
axial elongation, little volume change occurs. In fact, the rate of

transverse dimensional decrease is the same parallel to and perpendi-

cular to the straightened layer planes. This remarkable occurrence can
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can neither be explained by basal plane nor non-basal plane (prism
plane) glide. Some mass transport mechanism is required to cause equal
deformations parallel and perpendicular to the c-axis. TFischbach suggests
that this might be provided for by Nabbaro-Herring diffusion. The mea-
sured stress dependencies and activation energies for pyrolytic graphite
are consistent with this. He concludes that mass transport by diffusion
is the rate controlling process above 2000°C in graphite for graphitiza-
tion, annealing of irradiation damage and plastic deformation.

In the polycrystalline material ZTA, the activation energy for
creep is the same as that for the pyrolytic material, but the stress de-
rendence is very much higher. The existence of stress concentrating
cracks normal to applied stress direction may partially explain the latter.
Also, progressive elimination of twins, kinks, or other dewrinkling on
a micro-scale, may require higher stress dependencies. Nevertheless, no
slip systems other than the two associated with the basal plane have
been observed at any temperature. Elevated temperature deformation is
clearly by mechanisms which would be inoperative at room temperature.

From the above, and the reasoning in sections 4.12 and h.13, it
is concluded that the only plastic deformation at room temperature is
that which is elastically constrained. Jenkins use of the Bilby-Cottrell
plasticity model is not physically founded. PFinally, cracks effect the

strain elastically.
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L.2 Fracture of Polycrystalline Graphite
4,21 The Fracture Process

It is clear from the microstructural studies of the fracturing
process that there are three stages involved. The first stage, starting
relatively early, and continuing throughout in the deformation process,
is the formation of independent cleavage cracks through suitably oriented
flour particles. These tend to form normal to or at small angles to the
stress axis for all orientations. As the applied stress axis varies
from the pressing direction, the density of fractured flour particles
per unit strain decreases. Increasing the applied stress not only in-
creases the number of fractured particles, but causes linkages to occur
between previously cracked ones and also limited crack extension. This
second stage is also dependent on stress axis orientation. The total
crack lengths are functions of the probabilities that neighboring parti-
cles are suitably oriented. Thus, for anisotropic grades, the observed
cracks are longer when the material is stressed parallel to the pressing
direction than at other orientations. ILess energy is required to
fracture the smaller misoriented regions between cleaved flour particles.
The final stage of complete fracture occurs when the "linked" or extended
microcracks are sufficiently long to meet the critical crack length
criteria.

The processes normally associated with crack formation are those
of nucleation and growth. In graphite, a nucleation stage during deforma-
tion is not required as it is in metals and other materials. The latter

require a certain amount of plastic deformation for cracks to nucleate
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by dislocation mechanisms. In graphite, these sites preexist in the
zero stress state. A summary of the crack "nuclei on the crystallite

(3)

scale has been given by Soule and Nezbeda and are shown schematically

in Figure 70. Some of these are experimentally observed. The only
process necessary 1is that of growth and this requires relatively low
stresses. Therefore, the observed cleavage of flour particles is easy
and occurs early in deformation.

The growth of cracks via the linkage mechanism or via crack
extension in the later stages is the controlling step in fracture. Most
of the work of the fracture process is required to circumvent or fracture
the misoriented regions. From the fracture toughness tests, it has been
shown that the Gy, values (effectively, energy per unit area to create
the new surfaces in the misoriented regions) do not vary greatly between
the orientations for a single grade (0O per cent for ATJ and 25 per cent
for ZTA). If the critical crack lengths were the same irrespective of
orientation, it would be expected from strain energy considerations that
orientations with higher moduli would fail at lower stresses. That this
is contrary to observation is attributed to the relative ease of slow
crack growth and crack linkages for those low moduli orientations in
which particle basal planes are preferentially oriented perpendicular
to the stress axis. At final fracture, the critical crack lengths are
then vastly different between the orientations, and the strength of the
material is attributable to both the elastic modulus and the critical
crack length. These are both in turn functions of the preferred orien-
tations in such a manner that, as the modulus increases, the probability

the existence of an extensive crack decreases. For example in ZTA
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graphite, as the modulus increased from 1.6 x 106 to k.5 x 106 psi
the calculated critical crack length decreased from .29 to.l 2 inches.
The observed limited crack growth is analogous to the pop-in
phenomena observed in fracture toughness testing of other materials.
When a crack begins to propagate it is accompanied by a release of the
strain energy. If the strain energy release rate per unit of area
increase of the crack, —dU/dA, is greater than the work, Gy, required
to create the surfaces, the crack will continue to grow. However, if
-dU/dA decreases with increasing area, it is possible for propagation
to cease. Thig 1s the case for small cracks in polycrystalline graphites
and has also been observed by Corum(25) in fracture toughness testing

of graphite in flexure. Catastrophic failure occurs when -dU/dA never

falls below GI as the area increases. The work to create surfaces under

these conditions is defined as the critical value, GT,.

Iy .02 Fracture Criteria

Fracture toughness data have been determined for each of the
grades. This information forms a criteria for failure if knowledge of
pre-existing crack sizes is available. It is then only a matter of
substitution of the size into the proper geometry dependent equation
to determine the fracture strength. However, it has been shown that
polycrystalline graphites are in a class of materials that generate
their own cracks. Therefore, fracture toughness is useful only in
those cases in which the pre-existing cracks are larger than the

self-generated ones. The calculated magnitude of the latter for the
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grades tested are listed in Table 6 along with the average fracture
stresses, the elastic constants, the fracture toughness parameter and
other parameters to be described. The size was calculated on the basis
of a penny-shaped crack since this form represents the least area for a
given dimension and therefore requires the fewest number of cracked parti-
cles to form it. From these values, therefore, unless the pre-existing
crack size exceeded 0.12 inches in ATJ graphite, the fracture toughness
failure criteria is not applicable. It does, on the other hand, account
for the exceedingly low values intermittently encountered when testing
numbers of specimens.

The criteria suggested by Knibbs(%%% also tried. Figure 72 shows
the results along with his regression analysis lines. Taking into account
test procedure differences, the fit is reasonable except for ZTA. It is,
however, unsatisfactory since it is based on the weighted average of the
strength and does not account for stress axis orientation differences.

An alternate procedure has therefore been developed. It is somewhat simi-
lar to the Knudserﬁ%&%ﬂbach, but it is expanded to account for other
parameters which have been measured in this work.

The fracture stress, (jf, for a material containing a penny-shaped

(35)

crack can be determined from:

S]]

d. = Moye * (60)
b (1-)%) e

where Gy, 1s the critical crack extension force, E is the modulus of
the material at failure, }/) is Poisson's ratio and ¢ is half the

critical crack diameter. TFor a polycrystalline material consisting of
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nearly spherical particles, the self-generated crack size can be related
to the number of cracked particles contailned in the critical crack area,

n ., the average particle diameter, d, and the areal fraction of porosity,

(624

fp, by the relationship:

d[ B ]% (61)

It is as difficult to assess the magnitude of n, as it is c,
but relative values as a function of crystallite preferred orientation
and stress axis orientation can be determined. In Abpendix C a method is
given to determine the relative density of c-axes per unit solid conical
angle as a function of stress axis rotation: L (K,QXY) sinK . Since
we are considering cleavage stresses, the resolved normal stress,dn, on

these basal planes can be approximated by:
2
dn = O; cos= K (62)

where the thansverse and shear stresses are considered to be small; da
is the applied axial stress, and K is the angle from the stress axis.
The relative number of particles which will crack at any given stress

level as a function of A will be proportional to:

L(K,Q0 sin K 0052/( LKA sinicos K

- 6
Total number of particles ‘[77/2 L(K,CX) sianK ( ¥
" o)

The total relative number of cracked particles, N, is found by integra-

tion of this eguation, and:
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T7
4[0 /2 I( K,(X) sin K cong ak (6k4)
fom HK,O0 sin K aK

N(&Jd) =

For a given distribution of crystallites, a comparative value of the
relative numbers of cracked particles for a given stress as a function
of stress axis orientation can be determined. This 1s then the relative

probability that a single particle will be cracked, Py, where:
po= MOXO) (65)

Experimental values have been substituted into equation 72 and the re~-
sulting values of Py are listed in Table 6.

In a crack linkage mechanism, it is of interest to determine
the probability P,, that n adjacent particles have been cracked at the
given stress level. Assuming that the events are initially independent

of one another then:
Pp= P (66)

This probability has been plotted versus n in Figure 73 for the various
grades and orientations.

Finally, the orientation effect on fracture criteria can be
assessed. Most proposed failure criteria show a strength dependence on
the grain size to the minus one half power as would be found by sub-
stituting equation 61 into equation 60. This assumes the crack length
ig related to grain size. However, from the previous discussion, the
average crack length would be somewhat larger than d, and would be

proporiional to the square root of the average number, ﬁ, of adjacently
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cracked particles, where:

n o= _n=l (67)

n=1

This summation has been performed and the results are also in Table 6.
This shows that for ZTA, the average number of adjacent cracks against
the grain is twice the with-grain value.

The failure criteribn is finally arrived at by substituting the

value of n for n, in equation 61 (assuming a proportionality between

the two), and substituting this equation in turn into equation 60.

Therefore:
1

12 (68)

e oc Tex, ® ( 1-fp )2

2(1-)%) a a

Values of Uy have been plotted against the right hand side of the equa-
tion in Figure 7h4. The grain sizes were microscopically determined by
lineal measurements on polished specimens. The average proportionality
is 187 with a standard deviation on the glope of 35. Even with the
gimplifications involved in the deviation, the fit is reasonable. Since
it compensates for the preferred particle orientations, it represents a
considerable improvement over the Knudsen criteria.

The values of Gy, used in equation 68 to determine the points
on Figure Th were the experimentally determined values. Similarly, the
moduli used were the experimental values at fallure. Both of these
parameters have been shown to be dependent on the pore fraction. In

addition, the moduli also change with deformation. To enable the
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prediction of the strength of a graphite for which the physical pro-
perties of grain size, density and degree of preferred orientation are
knovn, it will be necessary to expand equation 68 by substituting the
equation of Figure 69 for GIC and equation 43 for E. The deformation
dependence of the moduli can be neglected since it is not known prior
to testing and the error of doing so will be within the scatter of the
prediction, Also, the differences in Poisson's ratios between graphite
grades and stress axis orientations have negligible effects. Therefore,
by using equation 68 in conjunction with the methods of this paper, it
is possible to predict strengths from physical property measurements.

The concepts of polycrystalline graphite fracture of the diser-
tation will now be summarized. On initial application of strain, only
negligible amounts of particle cracking occur, but the strain energy is
increased. Straln energy is controlled by the elastic modulus of the
material, which in turn is a function of the degree of preferred orien-
tation, the stress axis direction, the pore fraction and the number of
cracked particles. Increasing the strain further increases the strain
energy, and also causes individual flour particles to cleave. A certain
fraction of these will be neighbors, and the number of adjacently frac-
tured particles is governed not only by the magnitude of the applied
strain, but also by the degree of preferred orientation and the stress
direction. Knowledge of the latter two items enable the calculation of
the average number of neighboring particles suitably oriented to enter
into coincident fracture. This average can be considered to be the

crack "unit"”, and its area is a function of the particle size and the
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calculated number.

Further straining causes crack extension and/or linkages between
crack "units" through regions not as sultably oriented for fracture.
Although the strain energy is increasing, the various cracking pro-
cesses reduce it below the value for an equivalent crack-free
material. This effect is reflected in the reduction of measured modu-
lus with increasing deformation. When the rate of strain energy reduc-
tion per unit area of crack extension becomes equivalent to the frac-
ture energy required for that area increase, fallure occurs, i.e., one
of the linked or extended cracks has become critically large. This
crack can be considered to be composed of multiples of the "unit" crack
and the critical crack area is then a function of the "unit crack"
area, the number of "unit cracks" in the extended crack and the frac-
tion porosity. As previously stated, the "unit crack" area is parti-
cle size and orientation dependent. The number of '"units" increases
with applied strain. Finally, increasing pore fraction decreases the
number of "units" required for a given critical crack dimension.

The physical property effects on the strength criterion (equation
68) can be recapitulated as follows: Decreasing the particle size
necessitates greater numbers of single particle fractures to form a
crack of given dimensions. Since the higher deformations required to
fracture more particles raise the strain energy, the critical crack
size for failure decreases. Although a smaller critical crack size
must be produced for failure, reduced particle sizes increase strength.

Preferential orientation of basal planes normal to the stress axis both
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decreases the elastic modulus and increases the probability of single
particle failure. Both consequences combine to tolerate greater strains
and larger cracks; however the assoclated stress levels are decreased,
Finally, porosity causes the elastic modulus to decrease exponentially
with pore fraction, causes the surface energy to decrease linearly with
pore fraction, and causes the critical crack length to increase slight-
ly with pore fraction. Since the strength is related to the square
root of the modulus, it would be expected that the rate of decrease

in strength with pore fraction would be less than that for the modulus.
However in the porosity range of most graphites, the combined porosity
effects on all the parameters give an apparent rate of exponential
decreagse in strength that is approximately the same as the rate of

decrease in the modulus.
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5.0 CONCLUSIONS

The goals established for this study were to determine the
mechanisms of deformation and fracture of polycrystalline graphite
at room temperature. In order to accomplish this, previously established
testing and analytic techniques were first attempted. In many areas
these were either deficient or insufficiently proven or in dispute. It
was therefore necessary to improve many previous techniques, or to
develop new ones; and where treatments were in controversy, to theore-
tically establish the correct one. A summary of the results as well as
the improvements in both testing techniques and analyses of this work
follows. Suggestions for possible expansion of this work will be pre-

sented in the second subsection.

5.1 Summary of the Results

The major achievements of the work were the development of im-
proved, self-consistent models for both the deformation and fracture
of polycrystalline graphites, Analysis of the test data with respect
to these led to the following:

(A) A single analytic equation was determined, which describes
both the initial loading and the reloading stress~strain
curves. This was accomplished by considering the total
strain at a given stress to be comprised of three strain
components: (a) a linear elastic strain component; (b) an

elastically constrained plastic strain component; and (c) a
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residual strain component resulting from crack induced
internal stress rellef. On initial loading both the elastic
compliance and the residual strain in the equation are
dependent on the maximum applied elasgtic strain. The
equation for reloading to the previously applied maximum
stress differs from the above due to the constancy of the
compliance and the residual strain. It has been established
that the initial stages of deformation are transitory. The
deformation equation given in this paper then only describes
the steady state, higher deformation regions.

A fracture criterion for polycrystalline graphite was
determined which accounts for the effects on the strength
of the flour particle size, the flour particle preferred
orientation and the bulk density. Decreasing the particle
size increases the strength by increasing the number of
particle fractures required to form the critical crack.
Consequently higher stress levels are necessitated. Pre-
ferential orientation of basal planes normal to the stress
axis both decreases the elastic modulus and increases the
probability of particle fracture. Both consequences allow
greater strains and the existence of larger cracks prior

to fallure, however the assoclated stress levels are
decreased. Porosity significantly decreases both the elas-

tic modulus and the fracture surface energy but increases
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the crack dimensions only slightly for a given number of

cracked particles.

The other important results of the dissertation are:

(c)

(D)

(E)

(F)

The residual strain cannot be explained by a plastic defor-
mation mechanism. Instead it arises from crack induced
internal stress relief. The residual strain is a complex
phenomena and is dependent on such factors as degree of
crystallite preferred orientation, the graphitization tem-
perature, crystallite elastic constants and thermal expan-
sion coefficients, crystallite sizes, etc.

Above some transient region, there exist linear relation-
ships between the residual strains and: (a) the total
strains at the maximum stress per cycle; (b) the strain at
half the maximum stress; and (c) the elastic strain compon-
ent at the maximum stress. The linearity can be explained
if the number of deformation cracks is linearly propor-
tional to the elastic strain at the maximum applied stress.
The elastic strain component can in principle be analy-
tically derived from a knowledge of the preferred orienta-
tion, the fraction porosity and the state of deformation.
Some of the parameters must be experimentally determined
however,

An improved method to determihe the elastic modulus of fully
dense polycrystalline graphite from X-ray diffraction

analysis has been developed. The uncertainty in this



(G)

(1)

(1)

Q0

method is a counsequence of variable cy), elastic coefficients
between graphites.

The elastic modulus has been analytically derived to be
exponentially dependent on the volume fraction porosity.

The calculated rate constant is two to three times greater
than the experimentally determined wvalues.

Anglysis of the experimental data of this work, combined
with an interpretation of the work of other investigators,
indicates that the introduction of cracks into polycry-
stalline graphite affects the elastic strain component only.
The plastic strain component should be relatively unaffected.
The present analysis concludes that the excess elastic
deformation at the crack tip causes the elastic modulus

to be exponentially dependent on the number of cracked
crystallites or particles. The observed exponential depen-
dencies of the moduli on the maximum elastic strain can be
explained if a linear relationship exists between the
numbers of deformation cracks and the maximum appiied
elastic strain,

The extent of plastic deformation is limited by the elastic
deformation in the direction of stress application. It

has been shown in this work that the plastic strain compon-

th power of both the average

ent is proportional to the n
crystallite elastic compliance and the applied stress. The
value of n is approximately 3 for the graphites investi-

gated.
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Crack nuclei exist prior to load application. The three
stages of fracture are then: (a) the formation of indepen-
dent cleavage cracks through suitably oriented flour parti-
cles; (b) linkage of these independent cracks and/or
limited crack extension through regions not suitably
oriented; and (c) catastrophic failure of one of those
extended cracks.

The critical crack extension force does not vary greatly
between orientations of a single grade. The variation that
does exist results from fracture surface area differences
as a function of preferred particle orientation. Between
grades, the critical crack extension force decreases with
increasing porosity.

Critical crack lengths are dependent on the degree of pre-
ferred orientation, the flour particle size and the pore
fraction.

Since polycrystalline graphites generate their own cracks,
the fracture toughness approach to failure criteria is
valid only for those conditions in which preexisting cracks
are larger than those formed during deformation.

The Knudsen fracture criterion applied to graphite does not
account for orientation effects and thus is not totally

satisfactory.

With respect to testing techniques, several improvements were

For example, in the determination of the preferred orientation

uging X-ray diffraction, the Bacon technique was found lacking. Bacon
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uged a method in which the specimen was held fixed at the Bragg angle
from the beam and the planar density for 0002 directions was deter-
mined from a flat photographic plate. In this method, the measured
intensity is not only dependent on the density of basal planes as a
function of orientation from the pressing direction, but also of angular
position on the plate. In fact, at higher angles no diffraction occurs,
necessitating extrapolation into these regions. This problem was sur-
mounted in the present work by substituting a scintilation counter as
the measuring device and fixing it at twice the Bragg angle from the
incident beam. The intensity of 0002 diffractions as a function of
orientation was determined by rotating the specimen plane positioned
at the Bragg angle, about an axis perpendicular to the bisector of the
incident and diffracted beam. In this manner, no correction to .the
measured intensity data was necessgary and intensity values at any angle
from the pressing direction could be determined. This simple modifi—
cation of the Bacon technique represents a significant improvement.
Another testing technique improvement was made by the introduc-
tion of a natural crack into the fracture toughness specimen. Previous
investigators of polycrystalline graphite had used thin saw cuts to
provide the notch without establishing the effect of the radius of
curvatures of the notch tip on their experimental results. Although
for polycrystalline graphite this effect is probably insignificant, the
problem was avolded in the present work. The use of a center-notch
tensile specimen also eliminated inherent perplexities involwved in the

floxure tests of other investigations. TFor graphites, since the tensile
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and compression stress-gtrain curves are not identical and both are
nonlinear, the stresg distribution in flexure is complex and the use of
textbook strength of materials treatments is not valid. The introduc-
tion of a stress-raiser into the volume under tension further complicates
the situation. Since graphite'always fails in a tensile stress mode, the
pure uniaxial tensile stress application specimen is to be preferred

for mechanistic studies. Direct comparison with the results from stan-
dard tensile tests should also be facilitated.

With respect to analytic techniques, the extension of previous
analyses of the relative dengities of basal plane normals from X-ray
diffraction data, as detailed in Appendix C, broadens the usefulness
of this method. The modulus of elasticity as a function of the angle
from the pressing direction had been previously determined by holding
the density distribution of 0002 directions fixed and performing the
orientation tensor transformations on the elastic constants. In the
present work, this has been accomplished in Appendix D by the reverse
process, i.e., fixing the elastic constant distribution as a function
of angle from the stress axis and transforming the 0002 intensity
vector distribution. Although these methods lead to equivalent results,
treatment of the more complex stress distribution models is facilitated
by the procedures developed in this paper. An additional advantage
arose in the determination of the fracture criterion. From the rela-
tive density of basal plane normals per unit conical angle, the preferred
orientation effect on the relative critical crack size could be
accounted for, The flexibility of the present procedure thus gives it

a distinct advantage over the previous ones.
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The procedure developed in Appendix D to calculate the theoreti-
cal elastic modulus is an improvement of the uniaxial models presented
by Slagle. Transverse strain interactions between crystallites which
were neglected in previous calculations can now be accounted for.
Although it was deemed unnecessary in the present work, the method can
be extended to enable calculation of all the elastic constants of the
polycrystalline material at any angle from the pressing direction. This
can be achleved by solving the simultaneous equations for all six stress
components for each particle pair, determining the six strain components,
and then in turn incorporating these into an averaging procedure similar
to the one given., Again, it will probably be necessary to average the

values thus determined with those of the long particle models.

5.2 Suggested Future Work

Graphites with larger particle sizes, different flour particle
properties and a variety of binders are commercially available. The
universality of the analyses of this work should be checked by appli-~
cation of the methods to other grades. TFor instance, it is known that
materials with glassy, nongraphitizable binders tend to preferentially
fracture through the binder. Although the fracture criterion developed
herein probably is still valid, the change in failure mechanism may
alter some of the parameters.

It has also been suggested that the longitudinal elastic moduli
calculation in Appendix D could be extended to calculate the other

elastic constants. The quality of the calculation method could be
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verified by this extension. Attempts have been made to calculate the
coefficients of thermal expansion from the uniaxial stress models. It
is felt by the author that these have been deficient due to the neglect
of transverse strain interactions. Application of the methods of
Appendices C and D in conjunction with the derived deformation equation
ghould improve the calculations.

The analyses should be applied to elevated temperature mechanical
properties. As an example, it is known that significant increases in
the strength of graphite occur with increasing temperature. This can
partially be attributed to measured elastic moduli increases with tem-
perature. The author feels that the critical crack extension force pro-
bably also increases, and elevated temperature fracture toughness tests
should be performed. Since deformation at temperatures above 2000°¢
is associated with mass transport phenomena, strain rate dependencies of
deformation and fracture require assessment.

Since polycrystalline graphite can be classified as a brittle
material, it is possible that some of the approaches and analyses of
this paper may be directly applicalbe to some and partially applicable
to other polycrystalline brittle materials. A brief review of the
literature uncovered several areas of pertinence. The remainder of
this section will examine these.

It is clear that the uncommon mechanical behavior of polycry-
stalline graphite results from its layered structure and the extreme
directional dependence of all its crystalline properties. The weak

interplanar bonding causes the basal plane elastic shear constant,
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critical shear stress and cleavage strength to be unusually low. In

the polycrystalline body, these phenomena cause the observed low elastic
moduli, the nonlinear stress-strain curves, the large numbers and sizes
of deformation cracks, etc. Few materials have structures and/or pro-
perties that are as anisotropic as graphite, however work on some of

(38)

these has been reported. Magnesium dititanate and. Beta-Eucryptité39>
have been mechanically characterized and appear to deform and fracture
sim;larly to graphite. It appears that the procedures of the present
work could be fruitfully applied to better characterize these materials.
Although no mechanical property work was uncovered for them, other
possible candidates are the nitrides of boron, tungsten and niobium,
and the selenides of indium and gallium. These have crystal structures
in common with graphite and most have c/a ratios that are greater.

The more common polycrystalline anisotropic ceramics (e.g.,
A1203, BeO and Tio2) do not in general behave mechanically as does
graphite. Thelr structures exhibit less directionality and lack a plane
of extreme weakness. As a result the polycrystalline bodies have high
elastic moduli and high yleld stresses. Deformation is generally
elastic except for very small grain size materials which evidence slight
plasticity at high stress levels. Minimal numbers and sizes of defor-
mation cracks ensue becauvse the high moduli require the existence of
only small cracks for failure. Therefore, for the larger grain size
ceramics, both the deformation and fracture processes are simpler than
those for graphite. For the finer grained materials, the fracture pro-

cess in many ceramics is controlled by nucleation of the cracks by
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plastic deformation and therefore also differs from graphite. Never-
theless, certain features of the present work should be generally appli-
cable,

The models used to calculate the elastic modulus from the crystal
elastic constants and the preferred orientation could be adapted to
any anisotropic material. However, these more complicated methods are
probably unnecessary for most since the lesser degree of crystalline
anisotropy causes the single particle constant stress and constant
strain calculations to agree reasonably,

The empirical relationship between porosity and modulus suggested
by Spriggs(3o) has been analytically proven. Its wide use in the field
of ceramics is therefore justified. It would be beneficial to generalize
the treatment of Appendix B to consider ellipsoidal shaped pores. The
rate constant could then be determined as a function of shape and if
neceséary as a function of pore orientation relative to the stress axis,

Analogously, the relationship between the elastic modulus and
the fraction of cracked particles has been determined. Where pertin-
ent, this can be applied to other materials.

It is in the area of failure criteria that the approach used
in this dissertation could be most applicable to other brittle mater-
ials. A number of papers dealing with the strengths of polycrystalline
ceramic bodies(uo’ul) utilize the Knudsen equation(zo) to relate these
to the physical properties of porosity and grain size. Others(hz’MS)
have modified this equation in order to obtain better data fits and

still others have relied on statistical fits of strengths with physical
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properties,(uu> Although the Knudsen treatment is loosely based on the
theoretical Griffith criteria, it is largely empirical. There is no

a priori reason for the strength to be exponentially dependent on the
fraction porosity, for instance.

Recent attempts at resolving physical property effects on
strengths have returned to the theoretical criteria. Hasselman<u5)
believes that the pore size as well as the pore fraction influences
the strength. He states that stress concentrations associated with the
pores affect strength for a pore size of the order of or greater than
the flaw size. The critical crack size in the Griffith equation was
modified by increasing its length by the magnitude of the pore diameter.
The pore size effect was experimentally confirmed in a previous
paper (86) wherein the addition of a small fraction of pores into a
glass caused a precipitous drop in strength, Strength continued to
decrease with further pore additions, but at a lesser rate. The initial
drop was attributed to the addition of stress raisers (i.e., pores) near
the fracture producing flaws,

A linear relationship between the grain size and the measured
maximum crack size in high density T:'LO2 has been determined by Kirchner
and Gruver.(u7) Using literature values for both the fracture surface
energy and the elastic modulus, these authors substituted the measured
crack lengths into the Griffith equation and arrived at a strength -
grain size - crack size correlation.,

The procedure used in section 4,22 to determine the strength

dependency of graphite on its physical properties was to determine the
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effect of those properties on each of the parameters of the theoretical
brittle fracture equation. With certain modifications, this could be
adapted to other brittle materials. Elastic modulus - porosity rela=-
tionships are commonly reported for ceramics.(SO’ul’uQ’uh’u8’u9)
The nature of the relationship is disputed, but it is clear from the
present work that the exponential one is to be preferred. Fracture
toughness data have been determined on a number of ceramicsszl’so)
but porosity, grain size and preferred orientation effects on these have
not. Crack size as a function of orientation and grain size has been

(47)

only qualitatively discussed, although measurements in that paper

show the crack sizes to be larger than the grain size. The increase in

(45)

crack length with pore size has been noted. The work on ceramic
materials is therefore seen to be fragmented. To achieve rigorous
failure criteria for the materials, all the physical properties effects
on the parameters should be determined on each.

The failure criteria developed for graphite was based on the
observed fracture mechanism which certainly is not universal for all
brittle materials, Suitable modifications for the particular material
is therefore required. As an example, in high modulus materials, the
critical crack sizes are small., Therefore, the size of the pore as
well as the pore fraction could prove to be significant. The criteria
require alteration depending on whether failure occurs by simple
brittle fracture or is associated with plastic deformation. TFor a

(51)

given material these may be grain size or temperature dependem(ﬁz>

and more than one criteria would be required.
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Figure 1, A schematic representation of the deformation curves of

polycrystalline graphites,
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The longitudinal stress-strain curve of a ZTA graphite specimen
with the tensile stress cyclically applied parallel to the pressing

direction.
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Figure 11, The longitudinal stress~strain curve of an ATJ graphite specimen
with the tensile stress cyclically applied perpendicular to the

pressing direction,
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Figure 15, The average stress-strain curve for eight ZTA graphite
specimens with the tensile stress applied 30° to the pressing

direction.



115

4000 ! T T

g. = 3290 psi
g / A
€, = .00284 xo

3000 =

2000 ¢~

Stress, dm’ psi

A ZTA-60°-2
0O ZTA-60°-4
1000 -
vV ZTA-60°-6
O ZTA-60°-7
0 . ] f 1
0 . 001 . 002 . 003 . 004

Strain, € w
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Figure 55, The relative intensity of 0002 plane normals as a function of

the angle ¢ from the pressing direction, ZTA graphite,
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Figure 59, The relative density of 0002 plane normals per unit solid
conical angle, [, from an axis that has been rotated by an

angle (X from the pressing direction, ZTA graphite,
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Figure 60, The relative density of 0002 plane normals per unit solid
conical angle, /{ , from an axis that has been rotated by an

angle () from the pressing direction, ATJ graphite,
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Figure 67, The area of the ZTA graphite ring-shaped specimen (shown in Figure 66) under stress,
Magnification: 200 X,

99t



Figure 68, The area of the ZTA graphite ring-shaped specimen (shown in Figures 66 and 67 ) after
failure, Magnification: 200 X,

Lot
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Figure 69. The critical crack extension force (critical energy release
rate or fracture surface energy), GIc , as a function of the

fraction porosity, f_, for several graphite grades,
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penny-shaped cracks on the elastic compliance,
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Figure 76, Schematic diagrams used in the calculation of the effect of

spherical pores on the elastic compliance,
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Table 1.

The elastic constants of single crystal graphite. determined

on compression-annealed pyrolytic graphite, (2)

Elastic Compliances

13

X 10 cm?/dyne

2]
|

n - 0.98 + 0.03

b12 = -0,16 + 0,06

83 = 0,033 + 0,08
84 = 27.5 + L0

* =

S, = 29. to 56.

* Range given by all authors:

= 2 L] L]
S 44 21, to 10000

Elastic Moduli
X 10-13 dy*r,n%:s/cm.2

Q
Il

g = L06 + 0.02

€y, = 0.18 + 0.02

Q
il

13 = 0-015 + 0,005

Q
!

g3 = 0-0365 + 0,001

* =
044 0.00018t0 0, 00035

044 = 0,000 to 0, 00452

17T



Table 2. Poisson's ratios for several graphite grades.

€+ €3

ZTA .06 (.05)%* |17 (.25)

ATJ .10 (.11) 4 (.16)
V
AXF-5Q .21
AX7Z .23

178

€
UZI:"&T

.08 (.07)

o (.10)

* Subscripts refer to strain axis orientation relative to the pressing

direction :
1 : perpendicular
2 : perpendicular
3 : parallel

*k () : Seldin's data.(m)
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Table 4. Fracture toughness parameters for several graphite grades.

*

. Number
Specimen of
Type Specimens
ZTA-0° 5
ZTA-90° 6
ATJ-0° 6
ATJI-90° 6
AXF-5Q 3
AXZ 8

) : One standard deviation.,

Lo

1/2

psi - in,

660
1440

750
905

1120

720

(20)*
(80)

(20)
(20)

(130)

(100)

GIc

psi - in.

.660 (.030)

.760 (.040)

.580 (. 040)
. 580 (.040)

. 590 (.120)

.360 (.080)
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APPENDIX A

A CALCULATION OF THE EFFECTS OF PENNY-SHAPED CRACKS ON THE ELASTIC

COMPLIANCE OF AN ISOTROPIC BODY

The procedure used is to first establish the effect of a single
crack on the overall elastic compliance, and then to assess the effect
of adding a number of independent cracks into the body. For a poly-
crystalline body consisting of a collection of spherical particles, the
compliance will be shown to be dependent only on the volume fraction of
particles that have cracked and not on the crack sizes.

Sneddon(?)l1L> has determined the stress distributions in the
neighborhood of a penny-shaped crack in a homogeneous isotropic material
whose outside dimensions are very much greater than the radius of the
crack. The calculations were made by first considering the infinite
elastic media to be deformed by an internal pressure acting across the
surfaces of the crack and then the effect of tensile stresses (equal to
the pressure) applied to the body to free the internal crack of axial
stresses were deduced. The stress equations are written in dimension-

less cylindrical coordinates, and the strain in the axial direction can

be determined by the relationship:

1
€z - ﬁi [dz B U(dr * O,9) * po] (69)

where F;y is the elastic modulus of a crack free material, Uis

Poisson's ratio, P, 1s the internal pressure and (j; and (jé are the
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radial and tangential stresses respectively. Referring to Figure '
(a), the average strain, 6% of the body containing the crack can be

determined by integrating the strain over the entire body, adding the

volume of the opened crack and dividing by the initial volume:

Tfff pg af dp + v o)
27Tf f‘/_rfopdg 4

where ;) is the radial distance divided by the radius of the crack,

cs é; is the axial distance divided by the radius of the crack,f’
is the outer dimension of the sphere divided by the crack radius, and

V.

oc 1s the volume of the crack opened in the axial direction by the

applied pressure, py. The compliance of the body containing the single

crack can be determined by:

A= €,/ (71)

For a penny-shaped crack with an internal hydrostatic pressure
applied normal to its surface, Snedden gives the following stress distri-

bution equations:

2p o
0, = 77 (¢ -5 + £c; - €S (72)
4 (1
g, + 0+ 0 =--<_7_T+hpo<c;_sg) (73)
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where
c? = Y2 cos @/ 2) (74)
cg =t /32 [(sD/2) -0] (75)
sl0 -2 Y% o D/ 2) (76)
s, = tan—l[..ll_:zz :; ((?g// 22)) : 1; ilons% ] (77)
and
AR (8)
RS = (0" + &% - )"+ af? (79)
tanf) = 1/§ (80)

]

cot¢ (p2+£2-1)/2£ (81)

By substitution into Equation 69, the axial strain is given by:

€, ~ T [<1—u-2u2) (C‘f-sg””‘v”fcg‘fs?’+7?T} (8e)

1

The integration is simplified by the transformation of /O' §

coordinates to R-u coordinates which are related by:

= pts £ (83)
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R o= (uf+ aL%H)2 (81)

The limits of the integration must be suitably changed also to those
shown on Figure 71 (b). When the integration of Equation 82 is carried
out, the following results:
f‘é - i‘?ﬂ[z <1—U—zy2>+—‘-<1—v>-ﬂr‘3] (85)
Z Ei 9 20 6
The displacements, W, of the surface of the crack due to the

pressure Py in the axial direction is derived by Snedden to be:

2
4 1- 2 1/2

The volume due to extension in axial direction is determined by integ-

ration over the crack surface:

1
V., = 27’(’]2) w0 dap (87)

and is found to be:

- 2
Voo = 8(1-V")p, /3 (88).

The total volume of the hemisphere is:

0 [ [pap of - 2L (89)

By substituting equations- 85, 83 and 89 into Equation 70, the average

strain due to the introduction of a single small crack into a body under
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a uniaxial stress is determined:

€ - {1 [71+49U-80U2]/307TF3 (90)

i

The average compliance of the body with this crack is found by dividing

both sides of the equation by the stress p,, and
3 2 8
A = =% = A {1+ [71+49)/—80U ] —_— 1
E i 3077 1.3 (51)

where A; is the compliance of the crack free body, L is the outer

dimension of the body where:
L =["c (%2)

Since the effect on the compliance of adding a single crack to

a given material is:
- 3 3
A1 = Ai(1+kce /L) (93)

The effect of adding n independent cracks (spaced at least several

crack diameters apart) will be given by:

3 3
B = A Ur ke /L7 (9t)

where ke c3/E is the rate of compliance increase per crack given in
Equation 91.

If the body is assumed to consist of a collection of spherical
particles or grains and that these particles can crack independent of

one another, then the volume fraction, f,, of cracked particles will
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be:
P 4n7T03/3 3 nc3 \
c a1 /3 1 (95)
On substitution into the previous equation
3, 3
f L /¢
A = A, [1+k 03/L3] c (96)
n i c
Taking the natural logarithm of this equation:
L3 3 3
InA =1nA,+f—-——1n[1+kc/L] (97)
n i c 3 c
or
L3 03
= + ts———— —
A, = A+ = [ &, L3] (98)
. 3,.3 .
since kg”/L” is small compared to 1. Then,
InA = InA + k f (99)
or
A= Aiexp( kc fc) (100)
The equivalent equation for the modulus of elasticity is
E, = Eiexp(—kc fc) (101)

The comstant, k., is related only to the Poisson's ratio of

material. It is therefore shown that the elastic constants, An and

E,s are exponentially related only to the fraction of particles
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APPENDIX B

A CAICULATION OF THE EFFECTS OF SPHERICAL VOIDS ON THE ELASTIC

COMPLIANCE OF AN ISOTROPIC BODY

The procedure used is to establish the effect of a single
spherical void on the overall elasticcompliance, and then to assess
the effect of a number of independent voids. The compliance for a
given material will be shown to be dependent only on the volume
fraction of pores and not on the pore sizes.

Southwell(35) has determined the stress distribution in the
neighborhood of a small spherical flaw in a homogeneous isotropic
body when the stress at points far away from the flaw is uniform

uniaxial tension. Referring to Figure 75 (a), in cylindrical coordi-

nates, these are given to be:

3 2 2 2
= Po 2 - 102 _ I a
dr 14 - 10)) R3 [9 15Y) - 1249 - 52 (72 - 15 - 105=5) (102)

4 2
T a
1524 (5 —73{-2)]

3 2 2 2
p a a T a
O; = .I_Z___.(l)a__ =3 {9 -15)) - 12 B2 15—-R2 (1-2) “R2 )] (103)

a2 ré a2
- 120 )+15 =2 (5~ 7—2)]

were dr’ %, and(jZ are respectively to the radial, tangential and

axial stresses, Po is the applied stress in the axial direction z,
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is Poisson's ratio, a is the radius of the spherical pore, r is the

radial distance from the origin, and

R = (z2 + 1'2)1/2 (105)

The strain in the axial direction, z» can be determined from:

Z

€, = "%;‘[O’ - V(d, dg)] (106)

where E; is the modulus of elasticity of the material, free of voids.

Noting that

r/ R = sin¢ (107)

the axial strain can be written as:

_ P 1 2 _ g1 - g8y 2
€, = ® {1 S vesTYy [(302} 8Y) 38)R3 (108)
' ad 2,23 . o
+ 24(1+)) 55 + (U7 + 72) - 45)%)—3 sin b

5 3
- 120 (1 -)) &5 sin®( - 75 (1+))) 3 sin()

+ 105(1+U)-%55 sin4q5]>

The average strain 5 of the body containing the void can be
determined by integrating the above strain over the entire body, adding
the integrated displacement of the surface of the voild in the axial
direction V , and dividing by the initial volume. To simplify the

integration, it is done in spherical coordinates, Figure 72 (b), and:

7/
- Zﬂjo zfaL R? €, sin) dr d) + AV (109)

© 7P W smpan ap
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The integration of equation 108 results in:

_ 3__3_ 12 1+)) 5,1 1
f\!GZ _ L° -a —ﬁj:—lb—ﬁla (32--52) (110)

' The displacement, W, of the surface of the void in the axial

(34)

direction can be written as:

4 _ 42
LA G (c2-2%) /2 (122)
1

The volume change due to the extension in the axial direction,[&jp, is

found by integration of this equatlnn'

AVp = 27’[’[4p E-ZZ——)-][ r(az-rz)l/zdr (112)
0
which becomes:
2
AVp - 8pa (1-V7) 3.3 (113)

3 E;
Finally, the initial volume is found to be:

v, = 27T<L3 a%) (11%)

By substituting equations 110, 113 and 114 into equation 109,
the average strain due to the introduction of a single small spherical

pore into a body under a uniaxial stress is determined:

= _ p 72 (1+4))) a® (12 -a2)  4(1-)2) a3}
€ = ’i:%[” 14 -10}) LZ(LJ-a")+ (Ld—a*‘jlm

Since g is very much smaller than I, the compliance may be written as:

_ & T2 (1Y), 4(0-Y%) ] 88
A = F: = Al 1+[14 IOU —i-ﬁ—-— -i‘-3 (116)



or for a given material:

A = A (1+k,a%/13)
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(117)

The effect of adding n independent pores (spaced at least several pore

diameters apart) will be given by:

Ay = A;(1+k,a%/13)"

(118)

where kpa3/L3 is the rate of compliance increase per pore. The volume

fraction of pores is given by:

f - 4n as/3 ni3
p - aqris/3 - L3

On substitution into the previous equation:

3,3
f, L°/a
Ap = Aj(l+kyad/13)

Taking the natural logarithm of this equation:

3
A, = 1nAi+q,%31n(1+kpa3/L3)

or

L3 ad
InA, = InA; + fp‘z3(kp'i3)

since 1<;3c3/L3 is small compared to 1. Then

InA, = InA; + ki

and

A, = Aiexp(kpfp)

(119)

(120)

(121)

(122)

(123)

(12h)
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The equivalent equation for the modulus of elasticity is:

The congtant, kp, is related only to the Poisson's ratio of the material.
It is therefore shown that the elastic constants, An and Ep, are
exponentially related to the fraction of pores only, and not on the

pore size.
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APPENDIX C

Uniaxial pressing used in the production of certain synthetic
graphites causes the layer planes of the crystallites to be preferen-
tially oriented perpendicular to the pressing direction. This pro-
duces anisotropic graphite blocks which have an axls of rotational sym-
metry with isotropic planes normal to this axis. The magnitude of the
preferred orientation can be determined by X-ray diffraction methods.
This is achieved by: (a) cutting a thin slab whose plane is normal .
to the plane of isotropy; and (b) determining the relative intensity
of the diffraction of (0002) planes as a function of the angle from
the pressing direction. This procedure measures the relative density
of c-axes in the plane. It i1s of interest, however, to obtain the
relative density of c-axes per unit of solid angle in the volume in
order to relate these measurements to the bulk materials properties.
The purpose of this section is to establish the transformation equa-
tions to accomplish this.

The procedure used is a modification of that given by Bacon§25)
Referring to Figure 56, the relative intensities, I (), as a function
of angle @ from the pressing direction are schematically shown in (a)
and (b). To determine volume density distribution, Bacon considered
the solid angle element between the angles ¢ and (f + d @), and é;

and (é;-ﬂigg ) as shown in Figure 56 (c). The size of this element is:

dv = s apd af (126)
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The number of crystallites which have their c-axes within this angle is

proportional to .

1@rav = 1(¢) singd apaf (127)

Bacon shows that if some property, M(¢), is known for the crystallite as
a function of the orientation angle, ¢, then the average property, ﬂx3

in the direction of the axis of symmetry, X3, can be determined by:

R T = ol

He also gives the equatlon to determine the properties in a direction

perpendicular to the axis of symmetry.

The purpose of the following is to extend the treatment to
determine the equations which can be used to find the average properties
at any angle. This will be done by transforming the intensity vector to
a new set of coordinates rotated to the direction of interest. Referring
to Figure 57, the pressing direction is taken to be X35 and the plane of

isotropy is x It is of interest to determine the properties in the

17%e"

¥3 direction, rotated at some angle () from X3 about xo.

For pressed graphites the measured intensity of (0002) planes
in the Xq-X3 plane as a Ffunction of the angle § can be written in terms

of a Fourier series:

1) = W+Xcosng+Ycos4§b+zCos6¢ (129)
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where W,X,Y and Z are experimentally determined constants for the parti-

cular graphite. Using the identity:

cos Zgb = Zcosz¢ -1 (130)

the Fourier equation can be rewritten:

1((]5) = 32% cos6¢+ (8Y - 482)cos4§b + (2X - 8Y + 1sz)cos2q5(l3l)
+W-X+Y-%Z

The cos@term can be transformed to the new coordinate system by:
cosgb = cos K cos(X - sinf¢ cos/g sin(Y (132)
On substitution of equation 132 into equation 131, the intensity becomes:

I(K,BOO = 327 [A6 - 6A%Ccosf3 + 15A4C2 coszﬁ - 20A3c3cos?;8 (133)
+ 480AZC4cos4/8 - 6AC5cos5/8 + Cecosij]
+ (8Y - 48Z) [A4 - 4A3Ccos3 + 6a%c? cos?3 - 4AC3c0s33
+ 040054 + {2X - 8 2 2¢0s2
(2X -8Y+18Z) A 2ACcos/d + C=cos

+W-X+Y~-2Z
where

A = cosff cos(X (134)
and

C = sinf sin(} (135)

To determine the relative intensity of crystallites which have

their c-axes within the solid conical angle between K and K+ dK
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equation 133 must be integrated with respect toﬁ , to produce a new

intensity function:
27
L(K,Q)sink dK = fo[n/(,ﬂ,oosmlc aK]aB (136)

and

L A-Q)sinf(dK = 27({22 [16cos6K cos8Q(+120cos4K cos¥Ysin2K sin2ql37)
+ 9000s2Kcos20(sm4Ksm4a + 5sinS K sinBCY
+8(Y-6Z) [cos4/( cos? +3cos2/Ccossin2[(sin2(Y
+0, 375sint/¢ sin4a]:i- (X-4Y+9Z) [ZcoszK cos2(X
+ sin2/<sin20(]+ W-X+Y- z} sink dK
This equation then gives the relative density of c-axes at any angle K
from an axis that has been rotated from the pressing direction by an

angle (X . Therefore, the average property, B-/Ia , at any angle (X from

the pressing direction may be determined by:

/2
_ fa M (f) L (KO0 sin K dK (138)
“ T koo sk ak

where M (K¢) is equivalent to M (#).

M
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APPENDIX D

A DETERMINATION OF THE EILASTIC MODULI OF POLYCRYSTALLINE GRAPHITES
FROM THE ELASTIC CONSTANTS OF SINGLE CRYSTALS - USING A PARTICLE

PATR CONSTANT STRATIN MODEL

The purpose of this section is to establish an averaging technique
whereby the elastic moduli of bulk polycrystalline materials can be de-
termined from knowledge of the elastic properties of the hexagonal crystal
and of the orientations of those crystals. The elastic constants of
gsingle crystals of graphite have been determined by several investigators
and a summary of these results has been given by Blakslee, et.al.(g) With
the exception of cy), there is reasonable agreement between the values.

The basal plane shear constant appears to be dependent on the degree of
dislocation pinning. The values of the i3 and the 813 including the
range of c)), and s)), reported by the cited authors are given in Table 1.
The orientations of the crystallites can be determined from X-ray diffrac;
tion techniques by determining the relative intensity of (0002) plane
diffractions as a function of the angle from the axis of symmetry of the
bulk material. From this planar determination, the relative density of
basal plane normals per unit solid coniéal angle can be calculated using
the methods arrived at in Appendix C. These densities when divided by
the integrated density over all angles give the measured probability that
a crystallite 1s oriented at a given angle from the applied stress direct-

tion.
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Averaging techniques are all based on multiplying this probabi-
lity by the crystal property (e.g., the elastic modulus) at the parti-
cular angle and summing the results over all orjentations. The techni-
ques developed differ from one another depending on whether the material
is considered to be in a state of constant applied stress or constant
applied strain, i.e., whether the individual crystallites are considered
to be loaded in series or parallel. These models give the extrema of
the averaging models, the actual state being intermediate to these. Modi-
fied models have also been developed. These consider pairs of particles
and from the average crystal properties of the pairs (in parallel or in
series) and the probabilities of the single particles forming the given
pairs, the bulk polycrystalline properties can be calculated. Therefore,
the constant stress model is modified by considering the pairs to be in
constant strain with respect 3o one another, and the constant strain model
is modified by having the individual pairs in a constant stress state.
The four models are shown in Figure 61. It should be noted that models
can also be modified by considering triplets, or larger groups treated
analogously.

The following is the procedure used to determine the bulk proper-
ties of the polycrystalline materials using the model in which single
particles form pairs with other particles in series, and the pairs are in
turn parallel to one another, as in Figure 61 (d). There are two possi-
ble ways of performing the calculations: (a) the individual particles

can be considered to be very much longer in the applied stress direction



than transverse to it, or (b) they can be considered to be relatively
short in the applied stress direction. In case (a) the transverse
strain interactions between particles can be ignored and the transverse
stresées set to zero. This is essentially the procedure suggested by
Slagle.(32) In case (b), each particle is considered to be fixed to its
pailr partner, and transverse strain interactions give rise to transverse
stresses. This in turn modifies the axial stress in the pair subjected

to a constant axial strain. Both cases will be considered.

D.1 Particle Pairs under Constant Strain with No Transverse Strain

Interaction

The elastic constants as a function of the crystal orientation
from the principle directions can be determined from transformations given
in the theory of elasticity.(36) For hexagonal symmetry, the crystal
has only five independent elastic compliances, Sij% S11» S125 13> S33»
spl . In the model under consideration, it is of interest to determine

1
only one rotationally transformed compliance, 8335 due to rotation by an

angle ¢ about an axis in the plane of isotropy is given by:

S4s = Sy sin4¢ + 8, cos4¢ (S, Zsm)sinngcosng (139)
There will, of course, be a distribution of rotations about the axis of
symmetry, but this 1s irrelevent in this model. The modulus of elasticity
in the rotated orientation is given by the reciprocal of 533.
The density of basal plane normals per solid conical angle are
determined by the methods outlined in Appendix C. To determine the

properties of the bulk material in some direction,((, from the pressing
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direction, the value of (X and the Fourier constants must be first sub-
stituted into equation 137 to determine the proper distribution function,
L (/) sin £ . From this function a new distribution function must
next be generated, i.e., the one for the particle pairs. It can be shown
from probablility theory, that for large numbers of particles the probabi-
lity that two particles of the same orientation, P(i), form a pair, is

given by:
P = P(i)/[ZP(i)]z (140)

where EZIP (i) is the sum of the probabilities over all orientations.
Also, the probability that two particles of different orientations, P (i)

and P (j), form a pair is given by:

P = 2P(i)P(j)/[ZP(i)]2 (11)

The average elastic modulus for a single pair of like orientations

in constant strain is:

E. = B2 1h2
ii 845 (1) [zp(i)]z (142)

For unlike pairs the average modulus is:

s 2 P(i) P(j) 4
5y T-ZP(i)]z [s§3(i) n sé3(j)]/2 3)

These last two relationships result from the condition that the stresses

are equal in each of the particles, and the strains in each must sum to
the total applied strain.
The next step in the procedure is to divide the distribution

L (K, sin K into m equal parts with respect to the angle K (between
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0 and T[/2) and to characterize each interval by a value of s’33 (K)

at the midpoint. Setting

P(i) = L(%,a)sin(-g%) , i=1,2,...,m (1hk)

then the average modulus for the bulk material for this model is:
m .2 m~-l1 m . m -2
P(i 4P j
R P R YR o ey ['Z Pm] )
i=l 733 i=l j=itl { 33 33 ] i=1

A computer program written in FORTRAN IV is presented in the

back of this appendix.

D.2 Particle Pairs under Constant Strain with Transverse Strain

Interaction

The basls for this treatment is that when a pair of differentially
oriented particles in series is subjected to a constant strain, the
stresses in each adjust so as to minimize the total strain energy. If,
as in the previous model, there were no laterial constraints, the parti-
cles would extend different amounts in the transverse directions. Fix-
ing two particles to one another causes the transverse strains to be
equal in any given laterial direction, creating tensile stresses in one
particle and compressive stresses in the other. By Hooke's Law the
longitudinal stresses must therefore be effected. To determine the
average elastic modulus of each pailr, this longitudinal stress must be
determined and divided by the applied strain. The procedure used in

this averaging model is many times more complex since it involves
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rotations about two axes, the need to determine all the transformed
elastic compliances, and the solution of six simultaneous equations to
determine the average elastic compliances for each particle pair.

As in the previous model, the elastic compliances due to a rota-
tion about an axis in the isotropic plane must be determined. However,
all thirteen require evaluation. Since the rotation about the stress
axis of one particle relative to the other is pertinent in this model,
another transformation must be performed. This is shown in Figure 76(b).
The latter transformation generates twenty~one new compliances for each
new orientation.

To determine the average modulus of elasticity of a particle
pair of given orientations, a set of simultaneous equations are written
by adding the Hookean equations for the longitudinal strains in each

particle and subtracting the others:

6

a b a. b
€a = €3 + €3 = Zl(si3+si3)di = 1 (146)
i=
a b 6 a b
i=1

where the superscripts refer to one or the other particle in a given
pair,eé is the applied longitudinal strain, Eé is the longitudinal
strain in each particle, the Gﬁ are the transverse and shear strains,
and the(j; are the stress components. . The average modulus is de-
termined by setting E; to unity, solving the equations for Cfé, and
dividing by 2.

The averaging procedure is similar to the one described before,
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with the additional complication of the necessity to average the values
cbtained from the second rotation. The rotation of one particle rela-
tive to the other about the applied stress axis was accounted for in
the‘following manner, One of the particles was held fixed and the other
rotated at intervals of 77710 from O to'Tr. The average particle pair
compliance was determined at each interval, and the values at the 10
intervals were in turn averaged. This latter value provided the input
of s33 (i) and [sé3 (1) + s33 (j)] in equation 145, from which
the grand average bulk modulus was determined.

The computer program used is presented in the back of this
appendix. The transformation eguations were not previously given since

they are contained therein.
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